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ABSTRACT

In this article, a new approach is proposed to study the per-
formance of graph-based semi-supervised learning methods,
under the assumptions that the dimension of data p and their
number n grow large at the same rate and that the data arise
from a Gaussian mixture model. Unlike small dimensional
systems, the large dimensions allow for a Taylor expansion to
linearize the weight (or kernel) matrix W , thereby providing
in closed form the limiting performance of semi-supervised
learning algorithms. This notably allows to predict the clas-
sification error rate as a function of the normalization pa-
rameters and of the choice of the kernel function. Despite
the Gaussian assumption for the data, the theoretical findings
match closely the performance achieved with real datasets,
particularly here on the popular MNIST database.

Index Terms— semi-supervised learning, graphs, perfor-
mance analysis, random matrix theory

1. INTRODUCTION

Semi-supervised learning is one of the important legs of ma-
chine learning research. It is of great practical interest to
combine labeled data and unlabeled data, especially for the
classification problems where the collection of labeled data is
expensive and time-consuming.

Graph-based methods constitute one of the main branches
of semi-supervised learning. Let x1, . . . , xn 2 Rp be data
vectors. Among them are n[l] labeled data x1, . . . , xn

l

and
n[u] = n � n[l] unlabeled data xn

l

+1, . . . , xn. Labeled and
unlabeled data are considered as vertices in a weighted graph
with edge weights Wij reflecting the similarity between xi

and xj , and defined through a kernel function f ; here Wij =

f(kxi � xjk2/p). There are several approaches to consider
the semi-supervised learning problem on a graph, such as la-
bel propagation, random walk, electrical network, etc. [1] In-
spired by [2] which introduces an energy-based approach to
classify the unlabeled data, we formulate here the problem
in terms of the minimization of a cost function derived from
the graph, with the presence of a normalization term ↵ (as
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detailed in Section 2). The adjustment of ↵ retrieves vari-
ous known algorithms [3]. We propose here to identify the
normalization which minimizes the classification error rate.
The performance analysis is made difficult by the highly non-
linear structure of the algorithm and of W itself. To cope
with this strong technical limitation, we exploit the approach
developed in [4] to linearize the weight matrix W . The main
idea of this approach is that, under appropriate assumptions
on the data model, as n and p grow large at the same rate,
the key value kxi � xjk2/p converges to a constant ⌧ for all
i 6= j, thereby allowing for the linearization of Wij around
f(⌧). This linearization turns W into a tractable random ma-
trix from which the (asymptotic) output of the classification
algorithms can be statistically retrieved, analyzed, and im-
proved over their latent parameters (kernel function choice,
normalization parameters, etc.).

Our theoretical results lead to two crucial conclusions: (i)
in the large dimensional regime, traditional graph-based semi-
supervised learning methods, such as the Standard Laplacian
method (see e.g., [2]) and the Normalized Laplacian method
(see e.g., [5]) tend to fail, while the PageRank based method,
which is identified in [3], is the only method to yield sensible
classification results, and (ii) when the number of labeled data
is not balanced for every class, the classification algorithm no
longer works, but we provide a simple solution, consisting in
adding a normalization step in the algorithm.

2. OPTIMIZATION FRAMEWORK

Let x1, . . . , xn 2 Rp be n vectors classified in K classes
C1, . . . , CK . The n[l] data x1, . . . , xn[l]

are labeled in the
sense that the classes for these data are known, while the
n[u] = n� n[l] data xn[l]+1, . . . , xn are kept unlabeled.

Following classical works [2,3], we define an overall cost
function.

C(F ) =

KX

k=1

X

1i,jn

WijkD↵
i Fik �D↵

j Fjkk2

with Fik containing the (soft if Fik 2 R or hard if Fik 2
{0, 1}) score for xi to belong to class Ck, Wij = f(kxi �
xjk2/p) for some kernel function f , Di =

P
j Wij and ↵ 2

R a tuning parameter. In unsupervised learning, the value of



F is determined by minimizing C(F) [6]. In semi-supervised
learning, since some data classes are known, we additionally
impose the values of Fi,· for 1  i  n[l], thereby leading to
the following constrained optimization problem:

min

F2Rn⇥K

C(F ) s.t. Fik = �x
i

2C
k

, 1  i  n[l], 1  k  K

(1)
which has the explicit solution

F[u] = (In
u

�D�1�↵
[u] W[uu]D

↵
[u])

�1D�1�↵
[u] W[ul]D

↵
[l]F[l]

(2)

where F =


F[l]

F[u]

�
, W = {Wij}ni,j=1 =


W[ll] W[lu]

W[ul] W[uu]

�

and D = diag({Di}) =

D[l] 0

0 D[u]

�
. The final (hard) deci-

sion consists in classifying xi in Ca for a = max

k2[1,...,K]
Fik.

The performance of the classification algorithm can be
highly dependent on the value of ↵. In the literature, there
are two common choices for ↵: ↵ = 0 corresponding to the
Standard Laplacian method, ↵ = � 1

2 corresponding to the
Normalized Laplacian method. A third choice, ↵ = �1, is
discussed and named PageRank based method in [3].

3. MODEL AND THEORETICAL RESULTS

3.1. Model and assumptions

To obtain quantitative classification performance after the
hard-decision step following (2), we assume that the data
xi are retrieved from a mixture of K Gaussian (correspond-
ing to the classes) and let n, p ! 1. Specifically, for
k 2 {1, . . . ,K}, xi 2 Ck corresponds to xi ⇠ N (µk, Ck).
There are nk instances in Ck, among which n[l]k are labeled
and n[u]k are unlabeled.

When the number of data points n and their dimension p
grow simultaneously large, in order to ensure that the classi-
fication problem we study here is non trivial, in the sense that
the asymptotic error rate is neither 0 nor 1, µk and Ck are
chosen to behave in a prescribed manner, as described in [4]
for the unsupervised scenario.1

Assumption 1 (Growth Rate). As n ! 1, p
n ! c0 > 0,

n
k

n ! ck > 0 , and n[l]

n ! c[l] > 0. Besides,

1. For µo , PK
k=1

n
k

n µk and µo
k , µk � µo, kµ�

kk =

O(1).

2. For Co , PK
k=1

n
k

n Ck and Co
k , Ck � Co, kCkk =

O(1) and trC�
k = O(

p
n).

3. As n ! 1, 2
p trC

o ! ⌧ .

As for the kernel function, it follows the assumption below.
1Since semi-supervised learning is simpler than unsupervised learning,

the algorithms ought to perform at least as well under these conditions.

Assumption 2 (Kernel function). The kernel function f :

R+ ! R+ is three-times continuously differentiable in a
neighborhood of ⌧ .

The constant ⌧ introduced in the third point of Assump-
tion 1 is important as kxi � xjk2/p ! ⌧ almost surely and
uniformly on all i 6= j 2 {1, . . . , n}, which implies that all
data points xi are almost equally far away from each other
whether or not they belong to the same class. As a conse-
quence, the Wij’s, which are supposed to reflect the similarity
between xi’s , are asymptotically the same for all i 6= j, thus
do not exert its expected effect in the cost function C(F ), as
they do for small dimensional data. For that reason, we do
not expect the classification algorithm to work in our case,
but contrary to our intuition, it shall in fact work if and only
if ↵ ' �1, as explained in the subsection below.

3.2. Principle and results

As kxi � xjk2/p ! ⌧ almost surely, the off-diagonal en-
tries of W can be Taylor-expanded around f(⌧ ), which
allows for the decomposition of W and D into a series of
tractable random matrices. However, to access F[u] in (2),
this leaves us with the complicated inverse of the matrix
In

u

�D�1�↵
[u] W[uu]D

↵
[u] to handle. Fortunately, after decom-

position, we find that

W[uu] = f(⌧)1n[u]
1

T
n[u]

+O(n
1
2
)

D[u] = nf(⌧)In[u]
+O(n

1
2
)

where O(·) is with respect to the matrix operator norm, and
similarly for W[ul] and D[l], which then leads to

D�1�↵
[u] W[uu]D

↵
[u] =

1

n
1n[u]

1

T
n[u]

+O(n� 1
2
).

Therefore, (In[u]
� D�1�↵

[u] W[uu]D
↵
[u])

�1 can be Taylor-
expanded around

✓
In[u]

� 1

n
1n[u]

1

T
n[u]

◆�1

= In[u]
+

1

n[l]
1n[u]

1

T
n[u]

.

After explicit computation of the various O(·) terms
above (the full derivation is left to an extended version of the
article), we are able to analyze (2).

Proposition 1. The columns of F[u] can be expressed as2

(F[u])·a =

n[l]a

n

"
v|{z}

O(1)

+(1 + ↵)
trCo

a

p
1n[u]

| {z }
O(n� 1

2 )

#
+O(n�1

)

(3)
for some constant  and a random vector v, both independent
of a and of entries of order O(1). Here 1n is the vector of
ones of size n.

2The O(·) terms below are understood entry-wise.
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Fig. 1. Vectors (F[u])·a for 3-class MNIST data (zeros, ones,
twos), n = 192, p = 784, n[l]/n = 1/16, n[l]1 = n[l]2 =

n[l]3, n[u]1 = n[u]2 = n[u]3, Gaussian kernel, ↵ = �1.
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Fig. 2. Centered vectors (F �
[u])·a = (F[u])·a �

PK
b=1

n[l]b

n[l]
(F[u])·b for 3-class MNIST data (zeros, ones,

twos), n = 192, p = 784, nl/n = 1/16, n[l]1 = n[l]2 = n[l]3,
n[u]1 = n[u]2 = n[u]3, Gaussian kernel, ↵ = �1.

The two curly-bracketed terms in the right-hand side of
(3) do not contain relevant information about the class of un-
labeled points, which is solely contained within the tailing
term O(n�1

) (see the extended version of the article for a
full characterization of v). More importantly, they are fatally
harmful to the classification as the first term induces strong
bias of higher order than the information terms when n[l]a is
not the same for all a 2 {1, · · · ,K} and so does the second
term when we do not have ↵ ' �1. Our first conclusions are
then that, for the classification algorithm to behave correctly
in the large dimensional regime, we need to:

(i) Adapt the hard decision step from comparing (F[u])·a
to comparing (F[u])·a/n[l]a so as to eliminate the bias induced

by the first term (by making it the same for every column of
F[u]);

(ii) Impose ↵ = �1 + O(n� 1
2
) in order to degrade the

bias due to the second term.
As observed in Figure 1, (F[u])·a are indistinguishable at

the first order for MNIST data. This is unsettling at first sight
because (F[u])·a do not behave at all like (F[l])·a, which is
the purpose of the algorithm. This unexpected behavior of
(F[u])·a is again due to the large dimensional effect of data
and is consistent with our analysis. A detailed calculus in
fact reveals that the classification algorithm works nonethe-
less with ↵ ' �1 thanks to the information terms contained
within the tailing term O(n�1

) of (3), which allow for the
separation of classes, as shown in Figure 2.

With these remarks in mind and with some further calcu-
lus (available in the extended version of the article), we are in
position to provide the main result of the article:

Theorem 1. For xi 2 Cb unlabeled, let ˆFia =

np
n[l]a

Fia and

↵ = �1 +

�p
p . Then, under Assumptions 1–2, ˆFi. �Gb ! 0

weakly, with Gb ⇠ N (Mb,⌃b), where

(Mb)a = �2f 0
(⌧)

f(⌧)
˜µo
a
˜µo
b +

f
00
(⌧)

f(⌧)

tr

˜Co
ap
p

tr

˜Co
bp
p

+

2f
00
(⌧)

f(⌧)

tr(

˜Ca
˜Cb)

p
� f

0
(⌧)2

f(⌧)2
trCo

ap
p

trCo
bp
p

+

n�

n[l]

f
0
(⌧)

f(⌧)

trCo
ap
p

+Bb (4)

(⌃b)a1a2 =

 
f

00
(⌧)

f(⌧)
� f

0
(⌧)2

f(⌧)2

!2
2trC2

b trC
o
a1
trCo

a2

p2

+

4f
0
(⌧)2

f(⌧)2


µoT
a1

Cbµ
o
a2

+ �a2
a1

trCbCa1

n[l]a1

�
(5)

where Bb is a constant bias of order O(n), ˜µo
a = µo

a �PK
d=1

n[l]d

n[l]
µo
d, ˜Co

a = Co
a �

PK
d=1

n[l]d

n[l]
Co

d and ˜Ca = Ca �
PK

d=1
n[l]d

n[l]
Cd.

Since ˆFi· is asymptotically a Gaussian vector, we easily
access the asymptotic misclassification rate for the unlabeled
data. In particular, for K = 2, we have:

Corollary 1. Under the conditions of Theorem 1, and with
K = 2, we have, for a 6= b 2 {1, 2},

P (xi ! Ca|xi 2 Cb)�Q

 
(Mb)b � (Mb)ap

jT⌃bj

!
! 0 (6)

where j = [1� 1]

T and Q(x) = 1
2⇡

R1
x

exp(�t2/2)dt.

From (4) and (5), we see that f(⌧), f
0
(⌧), f

00
(⌧) and �

are the parameters influencing the output of the classification



algorithm. When K = 2, some interesting conclusions for
these parameters are readily drawn. From Corollary 1, we
deduce that for the classification algorithm to perform better
than random, we need to ensure that (Mb)b � (Mb)a > 0.

Keeping this in mind, we now take a closer look at each
term of (4):

(i) Evidently, ˜µo
b
˜µo
b � ˜µo

a
˜µo
b . So for the the first term,

in order to have � 2f 0(⌧)
f(⌧)

˜µo
b
˜µo
b � � 2f 0(⌧)

f(⌧)
˜µo
a
˜µo
b , we need

f
0
(⌧) < 0 since f(⌧) > 0 according to Assumption 2.

The same reasoning for the second and third terms induces
f

00
(⌧) > 0.
(ii) Since trCo

b trC
o
b � trCo

atrC
o
b , for the forth term, we

always have � f
0
(⌧)2

npf(⌧)2
trCo

bp
p

trCo

bp
p � � f

0
(⌧)2

npf(⌧)2
trCo

ap
p

trCo

bp
p for

any f 0
(⌧). So this term is harmful, working in the opposite

direction to (Mb)b � (Mb)a > 0.

(iii) For the fifth term, we have n�
n[l]

f
0
(⌧)

f(⌧)
trCo

b

�trCo

ap
p

for (Mb)b � (Mb)a and n�
n[l]

f
0
(⌧)

f(⌧)
trCo

a

�trCo

bp
p = � n�

n[l]

f
0
(⌧)

f(⌧)
trCo

b

�trCo

ap
p for (Ma)a � (Ma)b . It is a balance term in the

sense that, if it increases (Mb)b � (Mb)a, it decreases in-
evitably (Ma)a � (Ma)b. As it is the only term containing �
in (4) and (5), it allows to decrease P (xi ! Ca|xi 2 Cb) at
the expense of P (xi ! Cb|xi 2 Ca) or the other way around
through the adjustment of �.

4. SIMULATIONS

We provide in this section two simulations conducted respec-
tively on Gaussian data as defined in Assumption 1 and on
the real-world MNIST database [7]. Here, for the theoretical
comparison, we handle the MNIST data as if they were Gaus-
sian with means and covariances empirically obtained from
the full set of 13 007 images. In those simulations, we dis-
play the actual classification accuracy as a function of ↵, and
the theoretical curve obtained by applying Corollary 1. We
find that our theoretical results match extremely well the re-
ality not only for Gaussian data (Figure 3), but, quite surpris-
ingly, also for MNIST data (Figure 4) which are evidently not
Gaussian. This suggests that most of the image information
is retrieved from its first order (empirical) moments.

5. CONCLUDING REMARKS

This article has proposed a novel (random matrix-based)
framework of semi-supervised learning analysis. The lin-
earization of (2) led to theoretical results providing direct
access to the performance of the classification algorithm in
the large data regime. The high consistence of our model with
MNIST data suggests the appropriateness of a mere Gaussian
modeling in the large dimensional data regime. From the
theoretical results, we deduced several important conclusions
concerning the algorithm: (i) its outcome is strongly biased
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Fig. 3. Theoretical and empirical accuracy as a function of ↵
for 2-class Gaussian data, n = 512, p = 1024, n[l]/n = 1/8,
n[u]1 = n[u]2, Gaussian kernel.

�1.4 �1.2 �1 �0.8 �0.6
0.5

0.6

0.7

0.8

0.9

1

↵

ac
cu

ra
cy

simulation
theory

Fig. 4. Theoretical and empirical accuracy as a function of ↵
for 2-class MNIST data (zeros, ones), n = 1024, p = 784,
n[l]/n = 1/16, n[u]1 = n[u]2, Gaussian kernel.

by n[l]a unless we change the algorithm from comparing
(F[u])·a to comparing (F[u])·a/n[l]a. (ii) ↵ should be taken
around �1, which implies that among three existing methods
in the literature, the PageRank method is the only one that
works in our setting of large dimensional data. (iii) When
K = 2, f should be chosen so that f

0
(⌧) < 0, f

00
(⌧) > 0 in

order to ensure the good working of the algorithm.
An important extension of this work would be to handle

discrete kernel matrices such as the popular k-nearest neigh-
bor approach. More importantly, the advent of new semi-
supervised learning approaches arising from the sparse big
data [8] and signal processing on graph [9, 10] fields calls for
a development of our random matrix tools to encompass these
novel approaches.
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