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Abstract

Semi-supervised Laplacian regularization, a standard graph-based approach for learning
from both labelled and unlabelled data, is recently demonstrated (Mai and Couillet, 2018)
to have an insignificant high dimensional learning efficiency with respect to unlabelled data,
causing it to be outperformed by its unsupervised counterpart, spectral clustering, given
sufficient unlabelled data. Following a detailed discussion on the origin of this inconsis-
tency problem, a novel regularization approach involving centering operation is proposed
as solution, supported by both theoretical analysis and empirical results.

Keywords: semi-supervised learning, graph-based methods, high dimensional statistics,
distance concentration, random matrix theory

1. Introduction

Machine learning methods aim to form a mapping from an input data space to an output
characterization space (classification labels, regression vectors) by optimally exploiting the
information contained in the collected data. Depending on whether the data fed into the
learning model are labelled or unlabelled, the machine learning algorithms are respectively
broadly categorized as supervised or unsupervised. Although the supervised approach has by
now occupied a dominant place in real world applications thanks to its high-level accuracy,
the cost of labelling process, overly high in comparison to the collection of data, continually
compels researchers to develop techniques using unlabelled data with growing interest, as
many popular learning tasks of these days, such as image classification, speech recognition
and language translation, require enormous training datasets to achieve satisfying results.

The idea of semi-supervised learning (Chapelle et al., 2009) comes from the expectation
of maximizing the learning performance by combining labelled and unlabelled data, which
is of significant practical value when the cost of supervised learning is too high and the
performances of unsupervised approaches is too weak. Somewhat surprisingly though, al-
though quite natural, semi-supervised learning has not reached broad recognition. Due to
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the difficulty of properly uniting both labelled and unlabelled information, many standard
semi-supervised learning techniques were found to exhibit worse performances than their
one-sided counterparts (Shahshahani and Landgrebe, 1994; Cozman et al., 2002; Ben-David
et al., 2008), thereby hindering the interest for these methods.

A first key reason for the underperformance of semi-supervised learning methods lies
in the lack of understanding of such approaches, caused by the technical difficulty of a
theoretical analysis. Indeed, even the simplest problem formulations, the solutions of which
assume an explicit form, involve complicated-to-analyze mathematical objects (such as the
resolvent of kernel matrices).

A second important aspect has to do with dimensionality. As most semi-supervised
learning techniques are built upon low-dimensional reasonings, they suffer the transition
to large dimensional datasets. Indeed, it has been long noticed that learning from data of
intrinsically high dimensionality presents some unique problems, for which the term curse
of dimensionality was coined. One important phenomenon of the curse of dimensionality
is known as distance concentration, which is the tendency for the distances between high
dimensional data vectors to become indistinguishable. This problem has been studied in
many works (Beyer et al., 1999; Aggarwal et al., 2001; Hinneburg et al., 2000; Francois et al.,
2007; Angiulli, 2018), providing mathematical characterization of the distance concentration
under the conditions of intrinsically high dimensional data.

Since the strong agreement between geometric proximity and data affinity in low dimen-
sional spaces is the foundation of similarity-based learning techniques, it is then questionable
whether these traditional techniques will perform effectively on high dimensional data sets,
and many counterintuitive phenomena may occur.

The present work tackles both aforementioned tractability and dimensionality difficulties
at once, by precisely leveraging the large dimension of datasets to exploit recent advances
in random matrix theory. In doing so, the asymptotic performance of a class of well-known
semi-supervised approaches is precisely analyzed, the aforementioned weak performances
understood, and a simple yet powerful correction for those algorithms proposed and cor-
roborated by compelling simulation results.

The article concerns specifically semi-supervised graph regularization approaches (Zhu
et al., 2003; Zhou et al., 2004), a major subset of semi-supervised learning methods (Chapelle
et al., 2009), often referred to as Laplacian regularizations with their loss functions involv-
ing differently normalized Laplacian matrices (Avrachenkov et al., 2012). We refer the
readers to Section 2.1 for an introduction of these techniques. Characterizing the distance
concentration phenomenon under the conditions of a Gaussian mixture model, it was made
clear in a recent work (Mai and Couillet, 2018) that among existing Laplacian regulariza-
tion algorithms, only the one with the random walk normalized Laplacian matrix yields
reasonable results, yet with asymptotically negligible contribution from unlabelled dataset
(see Subsection 2.2 for more details). This last observation of the inefficiency of Laplacian
regularization methods to learn from unlabelled data may cause it to be outperformed by
a mere (unsupervised) spectral clustering approach (Von Luxburg, 2007) in the same high
dimensional settings (Couillet and Benaych-Georges, 2016).

The main contribution of this paper is the proposition of a novel semi-supervised graph
regularization algorithm to address the aforementioned inconsistency problem of the tra-
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ditional Laplacian approach with respect to unlabelled data. The proposed improvement
is simple to implement and effective. It is shown, through a rigorous theoretical analysis
placed under the large dimensional random matrix setting of large and numerous data (sim-
ilar to the previous work (Mai and Couillet, 2018) or to (Couillet and Benaych-Georges,
2016) in the context of spectral clustering), to induce a consistent semi-supervised learning
from high dimensional data, with labelled and unlabelled data learning efficiency lowered
bounded respectively by Laplacian regularization and spectral clustering. As a matter of
fact, the proposed method, featuring a tuning hyperparameter, consistently relates semi-
supervised learning to both unsupervised and supervised learning in showing that, at the two
extremes in the selection of the hyperparameter, the performance of unsupervised spectral
clustering and that of Laplacian regularization, which is essentially a supervised learning
method in high dimensions, are exactly recovered. With the hyperparameter optimally set
somewhere between these two extremes, the algorithm fulfills precisely the semi-supervised
learning goal of surpassing one-sided learning schemes by properly combining them, result-
ing in a significant advantage over the traditional Laplacian regularization. Apart from
theoretical conclusions, the superiority of the new regularization method is also illustrated
by simulations on various data sets.

Notations: 1n is the column vector of ones of size n, In the n× n identity matrix. The
norm ‖ · ‖ is the Euclidean norm for vectors and the operator norm for matrices. We follow
the convention to use oP (1) for a sequence of random variables that convergences to zero
in probability. For a random variable x ≡ xn and un ≥ 0, we write x = O(un) if for any
η > 0 and D > 0, we have nDP(x ≥ nηun)→ 0.

2. High Dimensional Semi-Supervised Graph Regularization

2.1 Preliminaries

We begin this section by recalling the basics of graph learning methods, before delving
into a high dimensional discussion of semi-supervised graph regularization. Consider a set
{x1, . . . , xn} ∈ Rp of p-dimensional input vectors belonging to either one of two affinity
classes C1 or C2. In graph-based methods, data samples x1, . . . , xn are represented by
vertices in a graph, upon which a weight matrix W is computed by

W = {wij}ni,j=1 =

{
h

(
1

p
‖xi − xj‖2

)}n
i,j=1

for some decreasing non-negative function h, so that nearby data vectors xi, xj are connected
with a large weight wij , which can also be seen as a similarity measure between data
samples. A typical kernel function for defining wij is the radial basis function kernel wij =

e−‖xi−xj‖
2/t. The connectivity of data point xi is measured by its degree di =

∑n
j=1wij , the

diagonal matrix D ∈ Rn×n having di as its diagonal elements is called the degree matrix.

Graph learning approach assumes that data points belonging to the same affinity group
are “close” in a graph-proximity sense. In other words, if f ∈ Rn is a class signal of data
samples x1, . . . , xn, it varies little from xi to xj when wij has a large value. The graph
smoothness assumption is usually characterized as minimizing a smoothness penalty term
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of the form
1

2

n∑
i,j=1

wij(fi − fj)2 = fTLf

where L = D−W is referred to as the Laplacian matrix. Notice that the above loss function
is minimized to zero for f = 1n; obviously such constant vector contains no information
about data classes. According to this remark, the popular unsupervised graph learning
method, spectral clustering, simply consists in finding a unit vector orthogonal to 1n that
minimizes the smoothness penalty term, as formalized below

min
f∈Rn

fTLf

s.t. ‖f‖ = 1 fT1n = 0. (1)

It is easily shown by the spectral properties of Hermitian matrices that the solution to
the above optimization is the eigenvector of L associated to the second smallest eigen-
value. There exist also other variations of the smoothness penalty term involving differ-
ently normalized Laplacian matrices, such as the symmetric normalized Laplacian matrix
Ls = In−D−

1
2WD−

1
2 , and the random walk normalized Laplacian matrix Lr = In−WD−1.

In the semi-supervised setting, we dispose of n[l] pairs of labelled points and labels
{(x1, y1), . . . , (xn[l]

, yn[l]
)} with yi ∈ {−1, 1} the class label of xi, and n[u] unlabelled data

{xn[l]+1, . . . , xn}. To incorporate the prior knowledge on the class of labelled data into
the class signal f , the semi-supervised graph regularization approach imposes deterministic
scores at the labelled points of f , e.g., by letting fi = yi for all xi labelled. The mathematical
formulation of the problem then becomes

min
f∈Rn

fTLf

s.t. fi = yi, 1 ≤ i ≤ n[l]. (2)

Denoting

f =

[
f[l]
f[u]

]
, L =

[
L[ll] L[lu]

L[ul] L[uu]

]
,

the above convex optimization problem with equality constrains on f[l] is realized by letting
the derivative of the loss function with respect to f[u] equal zero, which gives the following
explicit solution

f[u] = −L−1[uu]L[ul]f[l]. (3)

Finally, the decision step consists in assigning unlabelled sample xi to C1 (resp., C2) if fi < 0
(resp., fi > 0).

The aforementioned method is frequently referred to as Laplacian regularization, for it
finds the class scores of unlabelled data f[u] by regularizing them over the Laplacian matrix
along with predefined class signals of labelled data f[l]. It is often observed in practice that

using other normalized Laplacian regularizers such as fTLsf or fTLrf can lead to better
classification results. To integrate all these different Laplacian regularization algorithms
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into a common framework, we define L(a) = I −D−1−aWDa as the a-normalized Laplacian
matrix. Replacing L with L(a) in (3) to get

f[u] = −
(
L
(a)
[uu]

)−1
L
(a)
[ul]f[l], (4)

we retrieve the solutions of standard Laplacian L, symmetric Laplacian Ls and random
walk Laplacian Lr respectively at a = 0, a = −1/2 and a = −1.

Despite being a popular semi-supervised learning approach, Laplacian regularization
algorithms are shown by Mai and Couillet (2018) to have a non-efficient learning capacity
for high dimensional unlabelled data, as a direct consequence of the distance concentration
phenomenon, hinted at in the introduction. A deeper examination of the results in (Mai and
Couillet, 2018) allows us to discover that this problem of unlabelled data learning efficiency
may in fact be settled through the usage of a centered similarity measure, as opposed to
the current convention of non-negative similarities wij . In the following subsections, we
will recall the findings in the analysis of Mai and Couillet (2018), then move on to the
proposition of the novel corrective algorithm, along with some general remarks explaining
the effectiveness of the proposed algorithm, leaving the thorough performance analysis to
the next section.

2.2 Behaviour of Laplacian Regularization

Conforming to the settings employed by Mai and Couillet (2018), we adopt the following
high dimensional data model for the theoretical discussions in this paper.

Assumption 1 Data samples x1, . . . , xn are i.i.d. observations from a generative model
such that, for k ∈ {1, 2}, P(xi ∈ Ck) = ρk, and

xi ∈ Ck ⇔ xi ∼ N (µk, Ck).

with ‖Ck‖ = O(1), ‖C−1k ‖ = O(1), ‖µ2 − µ1‖ = O(1), trC1 − trC2 = O(
√
p) and tr(C1 −

C2)
2 = O(

√
p).

The ratios c0 = n
p , c[l] =

n[l]

p and c[u] =
n[u]

p are uniformly bounded in (0,+∞) for
arbitrarily large p.

Here are some remarks to interpret the conditions imposed on the data means µk and
covariance matrices Ck in Assumption 1. Firstly, as the discussion is placed under a large
dimensional context, we need to ensure that the data vectors do not lie in a low dimensional
manifold; the fact that ‖Ck‖ = O(1) along with ‖C−1k ‖ = O(1) guarantees non-negligible
variations in p linearly independent directions. Other conditions controlling the differences
between the class statistics ‖µ2 − µ1‖ = O(1), trC1 − trC2 = O(

√
p), and tr(C1 − C2)

2 =
O(
√
p) are made for the consideration of establishing non-trivial classification scenarios

where the classification of unlabelled data does not become impossible or overly easy at
extremely large values of p.

The first result concerns the distance concentration of high dimension data. This result
is at the core of the reasons why Laplacian-based semi-supervised learning is bound to fail
with large dimensional data.
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Proposition 1 Define τ = tr(C1 + C2)/p. Under Assumption 1, we have that, for all
i, j ∈ {1, . . . , n},

1

p
‖xi − xj‖2 = τ +O(p−

1
2 ).

The above proposition indicates that in large dimensional spaces, all pairwise distances
of data samples converge to the same value, thereby indicating that the presumed con-
nection between proximity and data affinity is completely disrupted. In such situations,
the performance of the Laplacian regularization approach (along with most distance-based
classification methods), which normally works well in small dimensions, may be severely
affected. Indeed, under some mild smooth conditions on the weight function h, the analysis
of Mai and Couillet (2018) reveals several surprising and critical aspects of the high dimen-
sional behavior of this approach. The first conclusion is that all unlabelled data scores fi
for n[l] + 1 ≤ i ≤ n tend to have the same signs in the case of unequal class priors (i.e.,
ρ1 6= ρ2), causing all unlabelled data to be classified in the same class (unless one normal-
izes the deterministic scores at labelled points so that they are balanced for each class). In
accordance with this message, we shall use in the remainder of the article a class-balanced
f[l] defined as below

f[l] =

(
In[l]
− 1

n[l]
1n[l]

1Tn[l]

)
y[l] (5)

where y[l] ∈ Rn[l] is the label vector composed of yi for 1 ≤ i ≤ n[l].
Nevertheless, even with balanced f[l] as per (5), (Mai and Couillet, 2018) shows that

the aforementioned “all data affected to the same class” problem still persists for all Lapla-
cian regularization algorithms under the framework of a-normalized Laplacian (i.e., for
L(a) = I −D−1−aWDa) except for a ' −1. This indicates that among all existing Lapla-
cian regularization algorithms proposed in the literature, only the random walk normalized
Laplacian regularization yields non-trivial classification results for large dimensional data.
We recall in the following theorem the exact statistical characterization of f[u] produced by
the random walk normalized Laplacian regularization, which was firstly presented by Mai
and Couillet (2018).

Theorem 2 Let Assumption 1 hold, the function h be three-times continuously differen-
tiable in a neighborhood of τ , and the solution f[u] be given by (4) for a = −1. Then, for
n[l] + 1 ≤ i ≤ n (i.e., xi unlabelled) and xi ∈ Ck,

p(c0/2ρ1ρ2c[l])fi = gi + oP (1)

where gi ∼ N (mk, σ
2
k) with

mk = (−1)k(1− ρk)

[
−2h′(τ)

h(τ)
‖µ1 − µ2‖2 +

(
h′′(τ)

h(τ)
− h′(τ)2

h(τ)2

)
(trC1 − trC2)

2

p

]
(6)

σ2k =
4h′(τ)2

h(τ)2

[
(µ1 − µ2)TCk(µ1 − µ2) +

1

c[l]

∑2
a=1(ρa)

−1trCaCk
p

]

+

(
h′′(τ)

h(τ)
− h′(τ)2

h(τ2)

)2
2trC2

k (trC1 − trC2)
2

p2
. (7)
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Theorem 2 states that the classification scores fi for an unlabelled xi follows approx-
imately a Gaussian distribution at large values of p, with the mean and variance being
explicitly dependent of the data statistics µk, Ck, the class proportions ρk, and the ratio of
labelled data over dimensionality c[l]. The asymptotic probability of correct classification
for unlabelled data is then a direct result of Theorem 2, and reads

P(xi → Ck|xi ∈ Ck, i > n[l]) = Φ

(√
m2
k/σ

2
k

)
+ op(1) (8)

where Φ(u) = 1
2π

∫ u
−∞ e

− t2

2 dt is the cumulative distribution function of the standard Gaus-
sian distribution.

Of utmost importance here is the observation that, while m2
k/σ

2
k is an increasing function

of c[l], suggesting an effective learning from the labelled set, it is independent of the unlabelled
data ratio c[u], which tells us that in the case of high dimensional data, the addition of
unlabelled data, even in significant numbers with respect to the dimensionality p, produces
negligible performance gain. Motivated by this crucial remark, we propose in this paper a
simple and fundamental update to the classical Laplacian regularization approach, for the
purpose of boosting high dimensional learning performance through an enhanced utilization
of unlabelled data. The proposed algorithm will be presented and intuitively justified in
the next subsection.

2.3 Regularization with Centered Similarities

To gain perspective on the cause of inefficient learning from unlabelled data, we will start
with a discussion linking the issue to the data high dimensionality.

Developing (4), we get

f[u] = L
(a)−1
[uu] D−1−a[u] W[ul]D

a
[l]f[l]

where

W =

[
W[ll] W[lu]

W[ul] W[uu]

]
and D =

[
D[l] 0

0 D[u]

]
.

From a graph-signal processing perspective Shuman et al. (2013), since L
(a)
[uu] is the

Laplacian matrix on the subgraph of unlabelled data, and a smooth signal s[u] on the
unlabelled data subgraph typically induces large values for the inverse smoothness penalty

sT[u]L
(a)−1
[uu] s[u], we may consider the operator Pu(s[u]) = L

(a)−1
[uu] s[u] as a “smoothness filter”

strengthening smooth signals on the unlabelled data subgraph. The unlabelled scores f[u]
can be therefore seen as obtained by a two-step procedure:

1. propagating the predetermined labelled scores f[l] through the graph with the a-

normalized weight matrix D−1−a[u] W[ul]D
a
[l] through the label propagation operator

Pl(f[l]) = D−1−a[u] W[ul]D
a
[l]f[l];

2. passing the received scores at unlabelled points through the smoothness filter Pu(s[u]) =

L
(a)−1
[uu] s[u] to finally get f[u] = Pu

(
Pl(f[l])

)
.
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It is easy to see that the first step is essentially a supervised learning process, whereas
the second one allows to capitalize on the global information contained in unlabelled data.
However, as a consequence of the distance concentration “curse” stated in Proposition 1,
the similarities (weights) wij between high dimensional data vectors are dominated by
the constant value h(τ) plus some small fluctuations, which results in the collapse of the
smoothness filter:

Pu(s[u]) = L
(a)−1
[uu] s[u] '

(
In[u]

− 1

n
1n[u]

1Tn[u]

)−1
s[u] = s[u] +

1

n[l]
(1Tn[u]

s[u])1n[u]
,

meaning that at large values of p, only the constant signal direction 1n[u]
is amplified by

the smoothness filter Pu.
To understand such behavior of the smoothness filter Pu, we recall that as mentioned

in Subsection 2.1, constant signals with the same value at all points are always considered
to be the most smooth on the graph. This comes from the fact that all weights wij have
non-negative value, so the smoothness penalty term Q(s) =

∑
i,j w[ij](si−sj)2 is minimized

at the value of zero if all elements of the signal s have the same value. Notice also that in
perfect situations where the data points in different class subgraphs are connected with zero
weights wij , class indicators (i.e., signals with constant values within class subgraphs which
are different for each class) are just as smooth as constant signals for they also minimize
the smoothness penalty term to zero. Even though such scenarios almost never happen
in real life, it is hoped that the inter-class similarities are sufficiently weak so that the
smoothness filter Pu is still effective. What is problematic for high dimensional learning is
that when the similarities wij tend to be indistinguishable due to the distance concentration
issue of high dimensional data vectors, constant signals have overwhelming advantages to
the point that they become the only direction privileged by the smoothness filter Pu, with
almost no discrimination between all other directions. In consequence, there is nearly no
utilization of the global information in high dimensional unlabelled data through Laplacian
regularizations.

In view of the above discussion, we shall try to eliminate the dominant advantages
of constant signals, in an attempt to render detectable the discrimination between class-
structured signals and other noised directions. As constant signals always have a smoothness
penalty of zero, a very easy way to break their optimal smoothness is to introduce negative
weights in the graph so that the values of the smoothness regularizer can go below zero.
More specifically, in the cases where the intra-class similarities are averagely positive and
the inter-class similarities are averagely negative, class-structured signals are bound to have
a lower smoothness penalty than constant signals. However, the implementation of such
idea using both positive and negative similarities is hindered by the fact that the positivity
of the data points degrees di =

∑n
j=1wij is no longer ensured, and having negative degrees

can lead to severely unstable results. Take for instance the label propagation step Pl(f[l]) =

D−1−a[u] W[ul]D
a
[l]f[l], at an unlabelled point xi, the sum of the received scores after that

step equals to d−1−ai

∑n[l]

j=1(wijd
a
j )fj , the sign of which obviously alters if the signs of the

degree of that point and those of labelled data change, leading thus to extremely unstable
classification results.

To cope with this problem, we propose here the usage of centered similarities ŵij , for
which the positive and negative weights are balanced out at any data point, i.e., for all
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i ∈ {1, . . . , n}, di =
∑n

j=1wij = 0. Given any similarity matrix W , its centered version Ŵ

is easily obtained by applying a projection matrix P =
(
In − 1

n1n1Tn
)

on both sides:

Ŵ = PWP.

As a first advantage, the centering approach allows to remove the degree matrix altogether
(for the degrees are exactly zero now) from the updated smoothness penalty

Q̂(s) =

n∑
i,j=1

ŵij(si − sj)2 = −sTŴs, (9)

securing thus a stable behavior of graph regularization with both positive and negative
weights.

Another merit of using centered similarities is that the distance between the intra-
class similarities and inter-class similarities in the previous graph is preserved, in the sense
that the average of inter-class similarities minus the average of inter-class similarities stays
unchanged after centering. Since the total sum of centered similarities ŵij amounts to zero,
the average of intra-class similarities is always positive while that of inter-class similarities
negative as long as the former are greater on average than the latter, which remains a
necessary condition for a functional semi-supervised graph regularization. Furthermore, in
the common situations where the similarity matrices W are constructed through a kernel
function, e.g., through the popular radial basis function (RBF) kernel wij = e−‖xi−xj‖

2/t,
there exists (by definition of kernel functions) a mapping x 7→ φ(x) such that

wij = φ(xi)
Tφ(xj).

Since

ŵij =

(
φ(xi)−

1

n

n∑
t=1

φ(xt)

)T(
φ(xj)−

1

n

n∑
t=1

φ(xt)

)
,

the centering operation is equivalent to translating the feature vectors φ(xi) by moving their
center to the origin, meaning that the relative positions between feature vectors remain
intact after the centering step.

This being said, a problematic consequence of regularization procedures employing pos-
itive and negative weights is that the optimization problem is no longer convex and may
have an infinite solution. To deal with this issue, we add a constraint on the norm of the
solution. Letting f[l] be given by (5), the new optimization problem may now be posed as
follows:

min
f[u]∈R

n[u]
−fTŴf

s.t.‖f[u]‖2 = n[u]e
2. (10)

Naturally, the optimization can be solved by introducing a Laplacian multiplier α to the
norm constraint ‖f[u]‖2 = n[u]e

2 and the solution is given by

f[u] =
(
αIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] (11)
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where α is determined by α > ‖Ŵ[uu]‖ and ‖f[u]‖2 = n[u]e
2. In practice, α can be used

directly as a parameter for a more convenient implementation. We summarize the method
in Algorithm 1.

Algorithm 1 Semi-Supervised Graph Regularization with Centered Similarities

1: Input: n[l] pairs of labelled points and labels {(x1, y1), . . . , (xn[l]
, yn[l]

)} with yi ∈
{−1, 1} the class label of xi, and n[u] unlabelled data {xn[l]+1, . . . , xn}.

2: Output: Classification of unlabelled data {xn[l]+1, . . . , xn}.
3: Compute the similarity matrix W .
4: Compute the centered similarity matrix Ŵ = PWP with P = In − 1

n1n1Tn , and define

Ŵ =

[
Ŵ[ll] Ŵ[lu]

Ŵ[ul] Ŵ[uu]

]
.

5: Set f[l] =
(
In[l]
− 1

n[l]
1n[l]

1Tn[l]

)
y[l] with y[l] the vector containing labelled yi.

6: Compute the class scores of unlabelled data f[u] =
(
αIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] for some

α > ‖Ŵ[uu]‖.
7: Classify unlabelled data {xn[l]+1, . . . , xn} by the signs of f[u].

The proposed algorithm induces almost no extra cost to the classical Laplacian approach,
except the addition of the parameter α controlling the norm of f[u]. However, as will be
demonstrated in the next section on performance analysis, the existence of this parameter,
aside from making the regularization with centered similarities a well-posed problem, actu-
ally allows one to adjust the combination of labelled and unlabelled information in search
for an optimal semi-supervised learning performance.

3. Performance Analysis

With the proposition of the centered similarities regularization intuitively justified in Sub-
section 2.3, the main purpose of this section is to provide mathematical support for its
effective high dimensional learning capabilities from not only labelled data but also from
unlabelled data, allowing for a theoretically guaranteed performance gain over the classical
Laplacian approach (through an enhanced utilization of unlabelled data). The theoretical
results also point out that the learning performance of the proposed method has an unla-
belled data learning efficiency that is at least as good as spectral clustering, as opposed to
Laplacian regularization.

We first enunciate the central theorem providing the statistical characterization of unla-
belled data scores f[u] obtained by the proposed updated algorithm. As the new algorithm
will be shown to draw both on labelled and unlabelled data information, the complex inter-
actions between these two types of data generate more intricate outcomes than in (Mai and
Couillet, 2018). To facilitate the interpretation of the theoretical results without cumber-
some notations, we restrict the theorem to the homoscedastic case as considered in linear
discrimination analysis (i.e., the class covariances are taken equal, C1 = C2 = C), without
affecting the generality of the conclusions given subsequently. We refer the interested reader
to the appendix for an extended version of the theorem along with its proof.
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Theorem 3 Let Assumption 1 hold with C1 = C2 = C, h be three-times continuously
differentiable in a neighborhood of τ , and f[u] be the solution of (10) with fixed norm n[u]e

2.
Then, for n[l] + 1 ≤ i ≤ n (i.e., xi unlabelled) and xi ∈ Ck,

fi = gi + oP (1)

where
gi ∼ N

(
(−1)k(1− ρk)m,σ2

)
for some m,σ2 > 0. More precisely, defining

θ =
c[u]m

2c[l]
(12)

and letting s : (0, ‖C + ρ1ρ2(µ1−µ2)(µ1−µ2)T‖)→ (0,+∞) be the injective function given
by

s(ξ) = ξρ1ρ2(µ1 − µ2)T
{
Ip − ξ

[
C + ρ1ρ2(µ1 − µ2)(µ1 − µ2)T

]}−1
(µ1 − µ2). (13)

the values of m and σ2 are determined by ρ1ρ2m
2 + σ2 = e2 and

σ2

m2
=

[
1−

(
θ

1 + θ

)2 q(θ)

(ρ1ρ2)2c[u]

]−1[
ω(θ) +

(
θ

1 + θ

)2 q(θ)

ρ1ρ2c[u]
+

(
1

1 + θ

)2 q(θ)

ρ1ρ2c[l]

]
(14)

where

q(θ) =
tr
[
(Ip − s−1(θ)C)−1C

]2
p [(µ1 − µ2)T(Ip − s−1(θ)C)−1(µ1 − µ2)]2

ω(θ) =
(µ1 − µ2)T(Ip − s−1(θ)C)−1C(Ip − s−1(θ)C)−1(µ1 − µ2)

[(µ1 − µ2)T(Ip − s−1(θ)C)−1(µ1 − µ2)]2
.

In the special cases where C1 = C2 = λ2Ip, the above theorem has much simpler form.

Corollary 4 Under the conditions and notations of Theorem 3, let C1 = C2 = λ2Ip, then
the values of m, σ2 are given by ρ1ρ2m

2 + σ2 = e2 and

σ2

m2
=

[
1−

(
θ

1 + θ

)2 λ4

‖µ1 − µ2‖4(ρ1ρ2)2c[u]

]−1[
λ2

‖µ1 − µ2‖2
+

(
θ

1 + θ

)2 λ4

‖µ1 − µ2‖4ρ1ρ2c[u]

+

(
1

1 + θ

)2 λ4

‖µ1 − µ2‖4ρ1ρ2c[l]

]
. (15)

Like the centered similarities regularization, the random walk normalized Laplacian
algorithm, which is the only one ensuring non-trivial classification results among existing
Laplacian algorithms for high dimensional data, gives also gi ∼ N

(
(−1)k(1− ρk)m′, σ′2

)
for

some other m′, σ′2 > 0 under the homoscedasticity assumption. We shall use the variance

11
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over square mean ratio r = σ2/m2 as the inverse performance measure (i.e., lower r indicates
better classification results for high dimensional data) in the following discussion. Denote
by rlap the ratio of the random walk normalized Laplacian algorithm, which is obtained
from Theorem 2 as

rlap =
(µ1 − µ2)TC(µ1 − µ2)

‖µ1 − µ2‖4
+

trC2

p‖µ1 − µ2‖4ρ1ρ2c[l]
(16)

and by rctr the ratio for the centered similarities method, the expression of which has a
rather complicated form given by (14).

Note importantly that the quantity θ(e) in fact reflects the ratio between the labelled
data scores f[l] and the unlabelled data scores f[u] as

θ =
c[u]m

2c[l]
'

√
‖E{f[u]}‖2

‖f[l]‖2
.

We observe notably that, when ‖f[l]‖2 � ‖E{f[u]}‖2, θ goes to zero, at which value the
unlabelled data over dimension ratio c[u] = n[u]/p disappears from the expression of rctr,
suggesting the performance relies solely on the labelled data. Inversely, if θ goes to infinity,
then it is the labelled data ratio c[l] = n[l]/p that will be left out from (14), and the
learning is only guided by the unlabelled data. In other words, the quantity θ can be seen
as a variable tuning the impacts of the two types of data on the learning process, which
is modified by changing the parameter e in the equality constraint ‖f[u]‖ = n[u]e

2 of the
optimization problem (10).

As stated in Subsection 2.3, the proposed method can be more conveniently imple-
mented by Algorithm 1, with f[u] computed by f[u] =

(
αIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] for some

α > ‖Ŵ[uu]‖. Obviously, the norm of f[u] is controlled by the hyperparameter α with large
α implying small ‖f[u]‖2, and consequently small θ, indicating that the labelled data in-
formation is emphasized at great values of α. By the same reasoning, the unlabelled data
information becomes more influential as α gets close to its minimal limit αinf = ‖Ŵ[uu]‖.
Actually, taking α ∈

(
‖Ŵ[uu]‖,+∞

)
infinitely near the two extremes of its admissible range

allows to retrieve respectively the performances of Laplacian regularization and spectral
clustering, as will be demonstrated in the following.

Firstly, following the argument in Subsection 2.3 that using centered similarities should
cause no loss of information as the difference between the intra-class and inter-class simi-
larities is preserved, we find indeed, by comparing (14) and (16), that

lim
θ→0

rctr = rlap,

meaning that the performance of the classical Laplacian regularization can be perfectly
retrieved with the centered similarities approach by letting its learning process be completely
guided with labelled data. In practice, this is achieved by letting α → +∞, at which
‖E{f[u]}‖2 < ‖f[u]‖2 → 0, leading to θ → 0. We remark thus that, with an appropriately
set α, the performance of the proposed method is lowered bounded by that of Laplacian
regularization.

12
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After ensuring the superiority of the new regularization method over the original ap-
proach, we now proceed to provide further guarantee on its unlabelled data learning ef-
ficiency by comparing it to spectral clustering, the standard unsupervised graph learning
technique.

Recall that the regular graph smoothness penalty term Q(s) of a signal s can be writ-
ten as Q(s) = sTLs. In an unsupervised spectral learning manner, we therefore seek the
unit-norm vector that minimizes the smoothness penalty, which is the eigenvector of L as-
sociated with the smallest eigenvalue. However, as Q(s) reaches its minimum at the clearly
non-informative flat vector s = 1n, the sought-for solution is provided by the eigenvector
associated with the second smallest eigenvalue. Instead, by (9), the updated smoothness
penalty term with centered similarities, that is Q̂(s) = sTŴs, does not achieves its minimum
for “flat” signals, and thus the eigenvector associated with the smallest eigenvalue is here a
valid solution. Another important aspect is that spectral clustering based on the unnormal-
ized Laplacian matrix L = D −W has long been known to behave unstably (Von Luxburg

et al., 2008), as opposed to the symmetric normalized Laplacian Ls = In −D−
1
2WD−

1
2 , so

fair comparison should be made versus Ls rather than L.

Let us define dinter(v) as the inter-cluster distance operator that takes as input a real-
value vector v of dimension n, then returns the distance between the centroids of the
clusters formed by the set of points {vi|1 ≤ i ≤ n, xi ∈ Ck}, for k ∈ {1, 2}; and dintra(v) be
the intra-cluster distance operator that returns the standard deviation within clusters. As
the purpose of clustering analysis is to produce clusters conforming to the intrinsic classes
of data points, with low variance within a cluster and large distance between clusters, the
following proposition (see the proof in the appendix) shows that the performance of the
classical normalized spectral clustering is practically the same as the one with centered
similarities for high dimensional data. In other terms, the high dimensional performance of
Laplacian spectral clustering on data samples of size n[u] is retrieved from the limiting results
in Theorem 3 at θ → +∞ (when spectral clustering leads to non-trivial partitioning). This
remark is subsequently validated on simulations in Figure 2, where the empirical perfor-
mance of Laplacian spectral clustering is found to closely match the theoretical performance
of the centered similarity approach when letting the learning process guided completely by
unlabelled data.

Proposition 5 Under the conditions of Theorem 3, let vlap be the eigenvector of Ls asso-

ciated with the second smallest eigenvalue, and vctr the eigenvector of Ŵ associated with
the largest eigenvalue. Then,

dinter(vlap)

dintra(vlap)
=
dinter(vctr)

dintra(vctr)
+ oP (1)

for non-trivial clustering with dinter(vlap)/dintra(vlap), dinter(vctr)/dintra(vctr) = O(1) .

As explained before, the solution f[u] of the centered similarities regularization can be

expressed as f[u] =
(
αIn[u]

−Ŵ[uu]

)−1
Ŵ[ul]f[l] for some α > ‖Ŵ[uu]‖. Clearly, as α ↓ ‖Ŵ[uu]‖,

f[u] tends to align to the eigenvector of Ŵ[uu] associated with the largest eigenvalue, and we
thus retrieve the performance of spectral clustering on the unlabelled data subgraph.

13
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It is worth pointing out that, according to the results of (Couillet and Benaych-Georges,
2016), it may occur that the solution v[u] obtained by spectral clustering be pure noise, i.e.,
E{v[u]} ' 0n[u]

for all large n, p. For example, with C1 = C2 = I, we have E{v[u]} ' 0n[u]

unless

c[u] >
1

(ρ1ρ2)2‖µ1 − µ2‖4
,

suggesting that there exists a threshold for c[u] under which spectral clustering performs
equally as random guess. This behavior of spectral clustering relates to an important phase
transition phenomenon on spiked random matrix models discussed in (Couillet and Benaych-
Georges, 2016) (see, e.g., (Baik and Silverstein, 2006; Benaych-Georges and Nadakuditi,
2012)). Such a phase transition phenomenon is actually associated with the fact that the
proposed semi-supervised learning scheme cannot produce reasonable classification results
(i.e., bounded values of rctr) by solely relying on unlabelled data information (i.e., θ → +∞)
below the phase transition threshold. Indeed, we observe from (14) in the appendix that
rctr has a well-defined positive value whenever the following condition of θ is satisfied:

1−
(

θ

1 + θ

)2 q(θ)

(ρ1ρ2)2c[u]
> 0. (17)

Letting θ → +∞ in the case of C1 = C1 = C, for which q(θ) = 1/‖µ1 − µ2‖4 according
to (15), we find the inequality condition (17) of c[u] to coincide with the phase transition
threshold in (3), as expected. Generally speaking, a certain value θ′ of θ is attainable
through the adjustment of α if the inequality (17) is satisfied at θ = θ′. As such, we note
importantly that the attainable range of θ can only enlarge with greater c[u].

It is obvious by looking at (14) that, at the same value of θ, rctr is a strictly decreasing
function of both c[l] and c[u]. Combining this observation with the remark that the attainable
range of θ can only broaden with larger c[u] and is not affected by the value of c[l], we deduce
straightforwardly that, with an appropriately chosen α, the performance of the proposed
method consistently benefits from the addition of input data, whether labelled or unlabelled,
as illustrated in Figure 1.

The following conclusion summarizes the main remarks obtained above.

Conclusion 1 The proposed centered similarities regularization, implemented by Algorithm 1
with the hyperparameter α, allows one to

1. recover the high dimensional performance of Laplacian regularization at α→ +∞;

2. recover the high dimensional performance of spectral clustering at α ↓ ‖Ŵ[uu]‖;

3. accomplish a consistent high dimensional semi-supervised learning for α set between
the two extremes, thus leading to an increasing performance gain over Laplacian reg-
ularization with greater amounts of unlabelled data.
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Figure 1: Asymptotic probability of correct classification as a function of θ with ρ1 = ρ2,
p = 100, µ1 = −µ2 = [−1, 0, . . . , 0]T, {C}i,j = .1|i−j|. Left: various c[u] with
c[l] = 1. Right: various c[l] with c[u] = 8. Optimal values marked in circle.

4. Experimentation

The objective of this section is to provide empirical evidence to support the proposition of
centered similarities regularization, by comparing it with Laplacian regularization through
simulations under and beyond the settings of the theoretical analysis.

4.1 Validation on Finite-Size Systems

We first validate the asymptotic results of the above section on finite data sets of relatively
small sizes (n, p ∼ 100). Recall from Section 3 that the asymptotic performance of Laplacian
regularization and spectral clustering are recovered by centered similarities regularization at
extreme values of the hyperparameter θ. In other words, the high dimensional accuracies of
Laplacian regularization and spectral clustering are given by Equation (14) of Theorem 3,
respectively in the limit θ = 0 and θ = +∞ (when spectral clustering yields non-trivial
solutions); this is how the theoretical values of both methods are computed in Figure 2.
The finite-sample results are given for the best (oracle) choice of the hyperparameter a in
the generalized Laplacian matrix L(a) = I −D−1−aWDa for Laplacian regularization and
spectral clustering, and for the optimal (oracle) choice of the hyperparameter α for centered
similarities regularization.

Under a non-trivial Gaussian mixture model setting (see caption) with p = 100, Figure 2
demonstrates a sharp prediction of the average empirical performance by the asymptotic
analysis. As revealed by the theoretical results, the Laplacian regularization fails to learn
effectively from unlabelled data, causing it to be outperformed by the purely unsupervised
spectral clustering approach (for which the labelled data are treated as unlabelled ones)
for sufficiently numerous unlabelled data. The performance curve of the proposed centered
similarities regularization, on the other hand, is consistently above that of spectral cluster-
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Figure 2: Empirical and theoretical accuracy as a function of c[u] with c[l] = 2, ρ1 = ρ2,

p = 100, −µ1 = µ2 = [−1, 0, . . . , 0]T, C = Ip (left) or {C}i,j = .1|i−j| (right).

Graph constructed with wij = e−‖xi−xj‖
2/p. Averaged over 50000/n[u] iterations.

ing, with a growing advantage over Laplacian regularization as the number of unlabelled
data increases.

Figure 2 also interestingly shows that the unsupervised performance of spectral clus-
tering is noticeably reduced when the covariance matrix of the data distribution changes
from the identity matrix to a slightly disrupted model (here for {C}i,j = .1|i−j|). On the
contrary, the Laplacian regularization, the high dimensional performance of which relies
essentially on labelled data, is barely affected. This is explained by the different impacts
labelled and unlabelled data have on the learning process, which can be understood from
the theoretical results of the above section.

4.2 Beyond the Model Assumptions

After verifying the advantage of the proposed centered similarities regularization in a finite
(and not so large) sample setting, we are now interested in examining the extent of its
superiority beyond the analysis framework.

As thoroughly discussed in Subsection 2.3, the key element causing the unlabelled data
learning inefficiency of Laplacian regularization is the negligible distinction between inter-
class and intra-class similarities, induced by the distance concentration of high dimensional
data. It is important to understand that this concentration phenomenon is essentially
irrespective of the Gaussianity of the data. Proposition 1 can indeed be generalized to a
wider statistical model by a mere law of large numbers; this is the case for instance of all

high dimensional data vectors xi of the form xi = µk +C
1
2
k zi, for k ∈ {1, 2}, where µk ∈ Rp,

Ck ∈ Rp×p are means and covariance matrices as specified in Assumption 1 and zi ∈ Rp any
random vector of independent elements with zero mean, unit variance and bounded fourth
order moment.
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As a side comment, it worth pointing out that the k−nearest neighbors (KNN) graphs,
constructed by letting wij = 1 if data points xi or xj is among the k nearest (k being
the parameter to be set beforehand) to the other data point, and wij = 0 if not, are not
covered by the present analytic framework. Our study only deals with graphs where wij is
exclusively determined by the distance between xi and xj , while in the KNN graphs, wij
is dependent of all pairwise distances of the whole data sets. Nonetheless, KNN graphs
evidently suffer the same problem of distance concentration, for they are still based on the
distances between data points. It is thus natural to expect that the proposed centering
procedure may also be advantageous on KNN graphs.

Upon the above remarks, we expect the advantage of the proposed method to manifest
itself on practical datasets, whenever a weak difference between inter-class and intra-class
similarities is observed (and whenever the data themselves or the relevant features to clas-
sify are obviously not too far from a mixture model). The exact convergence of all distances
to a common limit is of course an extreme mathematically ideal scenario; to gain an actual
sense of how the Laplacian regularization and the proposed centered similarities approaches
behave under different levels of distance concentration, we provide first, as a real-life ex-
ample, simulations on datasets from the standard MNIST database of handwritten digits
(LeCun, 1998). These are depicted in Figures 3–4.

As the performance of the methods tends to depend on the similarity graph, for a
fair and extensive comparison of Laplacian and centered similarities regularizations, the
results displayed here are obtained on their respective best performing graphs, selected
among commonly used graphs including KNN graphs with various numbers of neighbors
k = {21, . . . , 2q}, for q the largest integer such that 2q < n, and graphs constructed by
Gaussian (also called RBF) kernels, i.e., wij = e−‖xi−xj‖

2/σ2
, with bandwidth σ set to

the average data vector distance. The hyperparameters of the Laplacian and centered
similarities regularization approaches are set optimally within the admissible range.1

Figure 3 shows that high classification accuracy is easily obtained on MNIST data,
even with the classical Laplacian approach. However, it exhibits an unsatisfactory learning
efficiency when compared to the proposed method. We also find that the benefit of the
proposed algorithm is more perceptible on the classification task displayed in the right
of Figure 3 (digits 3 versus 5) than on the left task (digits 8 versus 9), for which the
difference between inter-class and intra-class distances is more apparent (and thus, in our
setting, too “trivial”). To further evidence the impact of non-trivial classification, Figure 4
presents situations where the learning problem becomes more challenging in the presence
of additive noise. Understandably, the distance concentration phenomenon is more acute
in this noise-corrupted setting, and so is the performance gain generated by the centered
similarities approach; this is indeed corroborated by Figure 4, demonstrating extremely
large performance gains produced by the proposed method. In the right of Figure 4 where
the similarity information is seriously disrupted by the noise, we observe the anticipated
saturation effect when increasing n[u] for the Laplacian regularization, in contrast to the
growing performance of the proposed approach. This suggests, in conclusion, that the

1. Specifically, the hyperparameter a of Laplacian regularization is searched among the values from −2 to
0 with a step of 0.02, and the hyperparameter α of centered similarities regularization within the grid
α = (1 + 10t)‖Ŵ[uu]‖ where t varies from −3 to 3 with a step of 0.1. The results outside these ranges
are observed to be non-competitive.
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Figure 3: Top: distribution of normalized pairwise distances ‖xi − xj‖2/δ̄ (i 6= j) with δ̄
the average of ‖xi − xj‖2 for 2-class MNIST data. Bottom: average accuracy as
a function of n[u] with n[l] = 10, computed over 1000 random realizations with
99% confidence intervals represented by shaded regions.
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Figure 4: Top: distribution of normalized pairwise distances ‖xi−xj‖2/δ̄ (i 6= j) with δ̄ the
average of ‖xi−xj‖2 for noised MNIST data (8,9). Bottom: average accuracy as
a function of n[u] with n[l] = 10, computed over 1000 random realizations with
99% confidence intervals represented by shaded regions.
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Figure 5: Average accuracy on two-class Cifar10 data as a function of n[u] with n[l] = 10,
computed over 1000 random realizations with 99% confidence intervals repre-
sented by shaded regions.

centered similarities approach is a privileged solution in all situations, but is especially
meaningful when the distinction between intra-class and inter-class similarities is quite
subtle.

In order to further stress the advantage of the proposed method on more challenging
datasets, we subsequently compare the Laplacian and centered similarities regularization
methods on the popular Cifar10 database (Krizhevsky et al., 2014). To obtain meaningful
results, the data went through a feature extraction step using the standard pre-trained
ResNet-50 network (He et al., 2016). Other experimental settings are the same as for the
above MNIST data. The simulations are reported in Figure 5, where the findings confirm
again the superiority of the proposed centered similarities approach.

5. Concluding Remarks

The key to the proposed semi-supervised learning method lies in the replacement of conven-
tional Laplacian regularizations by a centering operation on similarities. The motivation
behind this operation is rooted in the large dimensional concentration of pairwise-data dis-
tances and thus likely to extend beyond the present graph-based semi-supervised learning
schemes. It would in particular be interesting to know whether other advanced learning
models involving Laplacian regularizations benefit from the same update. A specific ex-
ample is Laplacian support vector machines (Laplacian SVMs) (Belkin et al., 2006), which
is another widespread semi-supervised learning algorithm. Answering this question about
Laplacian SVMs is however not a straightforward extension of the present analysis. Unlike
the outcomes of Laplacian regularization, Laplacian SVMs are learned through an optimiza-
tion problem without an explicit solution; additional technical tools, such as those recently
devised in the work of El Karoui et al. (2013), to deal with implicit objects are required for
analyzing their performance.
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As already anticipated by the theoretical results, it is not surprising that the proposed
centered similarities regularization empirically produces large performance gains over the
standard Laplacian regularization when the aforementioned distance concentration problem
is severe on the experimented data. However, it is quite illuminating to observe that even
on datasets with weak distance concentration, for which the standard Laplacian approach
exhibits a clear performance growth with respect to unlabelled data, the advantage of the
proposed algorithm is still preserved. This attests to the general potential of such high
dimensional studies for improving machine learning algorithms by identifying and settling
some underlying issues compromising their learning performance, which would be difficult
to spot if not through high dimensional analyses.
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Appendix A. Generalization of Theorem 3 and Proof

A.1 Generalized Theorem

We first present an extended version of Theorem 3 for the general setting where C1 may
differ from C2.

Theorem 6 Let Assumption 1 hold, h be three-times continuously differentiable in a neigh-
borhood of τ , and f[u] be the solution of (10) with fixed norm n[u]e

2. Then, for n[l]+1 ≤ i ≤ n
(i.e., xi unlabelled) and xi ∈ Ck,

fi = gi + oP (1)

where

gi ∼ N
(

(−1)k(1− ρk)m,σk
)

for some m,σ2k > 0. More precisely, defining

θ =
c[u]m

2c[l]
,

letting

νk =
[√
−2h′(τ)µTk

√
h′′(τ) trCk/

√
p
]T

Σk =

[
−2h′(τ)Ck 0p×1

01×p 2h′′(τ) trCk
2/p

]
and s : (0, ‖(ρ1Σ1 + ρ2Σ2) + ρ1ρ2(ν1 − ν2)(ν1 − ν2)T‖)→ (0,+∞) be the injective function

s(ξ) = ξρ1ρ2(ν1 − ν2)T
{
Ip+1 − ξ

[
(ρ1Σ1 + ρ2Σ2) + ρ1ρ2(ν1 − ν2)(ν1 − ν2)T

]}−1
(ν1 − ν2),
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the values of m and σ2k are determined by the equations

e2 = ρ1ρ2m
2 + ρ1σ

2
1 + ρ2σ

2
2

σ2k
m2

= ωk(θ) +

(
θ

1 + θ

)2 q(θ)

ρ1ρ2c[u]

(
1 +

ρ1σ
2
1 + ρ2σ

2
2

ρ1ρ2m2

)
+

(
1

1 + θ

)2 q(θ)

ρ1ρ2c[l]

where

q(θ) =
tr
(
Q(θ)−1Σ̄

)2
p [(ν1 − ν2)TQ(θ)−1(ν1 − ν2)]2

ωk(θ) =
(ν1 − ν2)TQ(θ)−1ΣkQ(θ)−1(ν1 − ν2)

[(ν1 − ν2)TQ(θ)−1(ν1 − ν2)]2

with Σ̄ = ρ1Σ1 + ρ2Σ2, Q(θ) = Ip+1 − s−1(θ)Σ̄ (s−1 being the functional inverse of s).

A.2 Proof of Generalized Theorem

The proof of Theorem 6 relies on a leave-one-out approach, in the spirit of El Karoui et al.
(2013), along with arguments from previous related analyses (Couillet and Benaych-Georges,
2016; Mai and Couillet, 2018) based on random matrix theory .

A.2.1 Main Idea

The main idea of the proof is to first demonstrate that for unlabelled data scores fi (i.e.,
with i > n[l]),

fi = γβ(i)Tφc(xi) + oP (1) (18)

where γ is a finite constant, φc a certain mapping from the data space that we shall define,
and β(i) a random vector independent of φc(xi). Additionally, we shall show that

β(i) =
1

p

n∑
i=1

fiφc(xi) + ε (19)

with ‖ε‖/‖β(i)‖ = oP (1).
As a consequence of (18), the statistical behavior of the unlabelled data scores can

be understood through that of β(i), which itself depends on the unlabelled data scores as
described by (19). By combining (18) and (19), we thus establish the equations ruling the
asymptotic statistical behavior (i.e., mean and variance) of the unlabelled data scores fi.

A.2.2 Detailed Arguments

In addition to the notations given in the end of the introduction (Section 1), we specify
that when multidimensional objects are concerned, O(un) is understood entry-wise. The
notation O‖·‖ is understood as follows: for a vector v, v = O‖·‖(un) means its Euclidean
norm is O(un) and for a square matrix M , M = O‖·‖(un) means that the operator norm of
M is O(un).
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First note that, as wij = h(‖xi−xj‖2/p) = h(τ)+O(p−
1
2 ), Taylor-expanding wij around

h(τ) gives (see Appendix C for a detailed proof) Ŵ = O‖·‖(1) and

Ŵ =
1

p
Φ̂TΦ̂ + [h(0)− h(τ) + τh′(τ)]Pn +O‖·‖(p

− 1
2 ) (20)

where Pn = In − 1
n1n1Tn , and Φ̂ = [φ̂(x1), . . . , φ̂(xn)] = [φ(x1), . . . , φ(xn)]Pn with

φ(xi) =
[√
−2h′(τ)xTi

√
h′′(τ)‖xi‖2/

√
p
]T
.

Define νk = E{φ(xi)}, Σk = cov{φ(xi)} for xi ∈ Ck, k ∈ {1, 2}, and let Z = [z1, . . . , zn]
with zi = φ(xi)− νk (i.e., E{zi} = 0). We also write the labelled versus unlabelled divisions

Φ =
[
Φ[l] Φ[u]

]
, Z =

[
Z[l] Z[u]

]
and Φ̂ =

[
Φ̂[l] Φ̂[u]

]
.

Recall that f[u] =
(
αIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l]. To proceed, we need to show that

1
n1Tn[u]

f[u] = O(p−
1
2 ). This follows from (20) and the results in Couillet and Benaych-Georges

(2016). Specifically, applying (20), we can express f[u] as

f[u] =

(
α̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1(1

p
Φ̂T
[u]Φ̂[l] −

r

n
1n[u]

1Tn[l]

)
f[l] +O(p−

1
2 )

where α̃ = α − h(0) + h(τ) − τh′(τ), r = h(0) − h(τ) + τh′(τ). Since 1T[l]f[l] = 0 from its

definition given in (5),

f[u] =

(
α̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1 1

p
Φ̂T
[u]Φ[l]f[l] +O(p−

1
2 ). (21)

Write Φ̂[u] = E{Φ̂[u]}+Z[u]−(Z1n/n)1Tn[u]
. Evidently, E{Φ̂[u]} = (ν1−ν2)sT where s ∈ Rn[u]

with si = (−1)k(n−nk)/n for xi ∈ Ck, k ∈ {1, 2}. By the large number law, s = e+O(p−
1
2 )

where e ∈ Rn[u] with ei = (−1)k(1− ρk) for xi ∈ Ck, therefore

1

p
Φ̂T
[u]Φ̂[u] =

1

p

{
‖ν1 − ν2‖2eeT + ZT

[u]Z[u] + (1TnZ
TZ1n/n

2)1n[u]
1Tn[u]

+ [ZT
[u](ν1 − ν2)]e

T

+ e[ZT
[u](ν1 − ν2)]

T − (ZT
[u]Z1n/n)1Tn[u]

− 1n[u]
(ZT

[u]Z1n/n)T
}

+O‖·‖(p
− 1

2 ).

Set

U =
1
√
p

[
e ZT

[u](ν1 − ν2) 1n[u]
ZT
[u]Z1n/n

]

N =


‖ν1 − ν2‖2 1 0 0

1 0 0 0
0 0 (1TnZ

TZ1n/n
2)− r

c0
−1

0 0 −1 0

 .
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Invoking Woodbury’s identity(Woodbury, 1950), we get(
α̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1
=

(
α̃In[u]

− 1

p
ZT
[u]Z[u] − UNUT

)−1
+O‖·‖(p

− 1
2 )

= R+RU(N−1 − UTRU)−1UTR+O‖·‖(p
− 1

2 ) (22)

where R =
(
α̃In[u]

− 1
pZ

T
[u]Z[u]

)−1
. Note also that

1

p
Φ̂T
[u]Φ[l]f[l] =

√
pU


(ν2 − ν1)T 1

pΦ[l]f[l]
2c[l]ρ1ρ2

0
0

+
1

p
ZT
[u]Z[l]f[l] +O(p−

1
2 ). (23)

Similarly to the results of (Couillet and Benaych-Georges, 2016, Equation 7.6), UTRU is of
the form

UTRU =

[
A 02×2

02×2 B

]
+O‖·‖(p

− 1
2 ) (24)

for some matrices A,B ∈ R2×2 of O(1)-operator norm and p−
3
2 ‖UTRZT

[u]Z[l]f[l]‖ = O(p−
1
2 ).

Substituting (22) and (23) into (21) and using the fact that p−
3
2 ‖UTRZT

[u]Z[l]f[l]‖ = O(p−
1
2 )

allows us to obtain

1

n
1Tn[u]

f[u] = c−10

[
0 0 1 0

]
K


(ν2 − ν1)T 1

pΦ[l]f[l]
2c[l]ρ1ρ2

0
0

+O(p−
1
2 ) (25)

with

K = UTRU + UTRU(N−1 − UTRU)−1UTRU.

Since UTRU is of the form (24), we find from classical algebraic arguments that K is also
of the same diagonal block matrix form. We thus finally get from (25) that 1

n1Tn[u]
f[u] =

O(p−
1
2 ).

Now that we have shown that 1
n1Tn[u]

f[u] = O(p−
1
2 ), multiplying both sides of (21) with

α̃In[u]
− 1

p Φ̂T
[u]Φ̂[u] + r

n1n[u]
1Tn[u]

from the left gives

α̃f[u] =
1

p
Φ̂T
[u]Φ̂[u]f[u] +

1

p
Φ̂T
[u]Φ̂[l]f[l] +O(p−

1
2 ).

Decomposing this equation for any i > n[l] (i.e., xi unlabelled) leads to

α̃fi =
1

p
φ̂(xi)

TΦ̂f +O(p−
1
2 ) (26)

α̃f
{i}
[u] =

1

p
Φ̂
{i}T
[u] φ̂(xi)fi +

1

p
Φ̂
{i}T
[u] Φ̂

{i}
[u] f

{i}
[u] +

1

p
Φ̂
{i}T
[u] Φ̂[l]f[l] +O(p−

1
2 ) (27)
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with f
{i}
[u] standing for the vector obtained by removing fi from f[u], Φ̂

{i}
[u] for the matrix

obtained by removing φ̂(xi) from Φ̂[u].

Our objective is to compare the behavior of the vector f[u] decomposed as {fi, f{i}[u] } to

the “leave-xi-out” version f
(i)
[u] to be introduced next. To this end, define the leave-one-out

dataset X(i) = {x1, . . . , xi−1, xi+1, . . . , xn} ∈ R(n−1)×p for any i > n[l] (i.e., xi unlabelled),

and Ŵ (i) ∈ R(n−1)×(n−1) the corresponding centered similarity matrix, for which we have,
similarly to Ŵ ,

Ŵ (i) =
1

p
Φ̂(i)TΦ̂(i) + [h(0)− h(τ) + τh′(τ)]Pn−1 +O‖·‖(p

− 1
2 ) (28)

where Φ̂(i) = [φ̂(i)(x1), . . . , φ̂
(i)(xi−1), φ̂

(i)(xi+1), . . . , φ̂
(i)(xn)] = [φ(x1), . . . , φ(xi−1), φ(xi+1),

. . . , φ(xn)]Pn−1. Denote by f
(i)
[u] the solution of the centered similarities regularization on

the “leave-one-out” dataset X(i), i.e.,

f
(i)
[u] =

(
αIn[u]−1 − Ŵ

(i)
[uu]

)−1
Ŵ

(i)
[ul]f[l]. (29)

Substituting (28) into (29) leads to

α̃f
(i)
[u] =

1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u]f

(i)
[u] +

1

p
Φ̂
(i)T
[u] Φ̂[l]f[l] +O(p−

1
2 ) (30)

where Φ̂(i) =
[
Φ̂
(i)
[l] Φ̂

(i)
[u]

]
. From the definitions of Φ̂

(i)
[u] and Φ̂

{i}
[u] , which essentially differ by

the addition of the O(1/p)-norm term φ(xi)/n to every column, we easily have

1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u] −

1

p
Φ̂
{i}T
[u] Φ̂

{i}
[u] = O‖·‖(p

−1). (31)

Thus, subtracting (30) from (27) gives

M (i)
(
f
{i}
[u] − f

(i)
[u]

)
=

1

p
Φ̂
(i)T
[u] φ̂(xi)fi +O(p−

1
2 ) (32)

with

M (i) = α̃I(n[u]−1) −
1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u].

Set β = 1
p Φ̂f = O‖·‖(1), the unlabelled data “regression vector”, and its “leave-one-out”

version β(i) = 1
p Φ̂(i)f (i) with f (i) =

[
f[l] f

(i)
[u]

]
. Applying (31) and (32), we get that

β − β(i) =

(
Ip +

1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u]

)
1

p
fiφ̂(xi) +O‖·‖(p

−1) = O‖·‖(p
− 1

2 ). (33)

By the above result, Equation (26) can be expanded as

α̃fi =β(i)Tφ̂(xi) +
1

p
φ̂(xi)

T

(
Ip +

1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u]

)
φ̂(xi)fi +O(p−

1
2 ). (34)
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To go further in the development of (34), we first need to evaluate the quadratic form

κi ≡
1

p
φ̂(xi)

TT (i)φ̂(xi)

where

T (i) = Ip +
1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u] .

Since T (i) = O‖·‖(1) (Couillet and Debbah, 2011, Theorem 7.1) and φ̂(xi) is independent

of T (i), it unfolds from the “trace lemma” (Couillet and Debbah, 2011, Lemma 14.2) that
κi = O(1) and that κi converges almost surely to a deterministic limit κ independent of i
at large n, p. Equation (34) then becomes

fi = γβ(i)Tφ̂(xi) +O(p−
1
2 ). (35)

where γ = (α̃− κ)−1.
We focus now on the term β(i)Tφ̂(xi) in (35). To discard the “weak” dependence between

β(i)T and φ̂(xi), let us define

φc(xi) = (−1)k(1− ρk)(ν2 − ν1) + zi.

As nk/n = ρk + O(n−
1
2 ), by the law of large numbers, E{φ̂(xi)} = (−1)k[(n− nk)/n](ν2 −

ν1) = E{φc(xi)} + O‖·‖(n
− 1

2 ). Remark that, unlike φ̂(xi), φc(xi) is independent of all xj
with j 6= i, and therefore independent of β(i). We thus now have

β(i)Tφ̂(xi) = β(i)T
(
E{φ̂(xi)}+ zi −

1

n

n∑
m=1

zm

)
= β(i)Tφc(xi) +

1

n
βTZ1n +O(p−

1
2 ).

We get from (33) that 1
nβ

(i)TZ1n = 1
nβ

TZ1n +O(p−
1
2 ), leading to

fi = γβ(i)Tφc(xi) +
1

n
βTZ1n +O(p−

1
2 ). (36)

Since φc(xi) is independent of β(i), according to the central limit theorem, β(i)Tφc(xi)
asymptotically follows a Gaussian distribution.

To demonstrate that 1
nβ

TZ1n is negligibly small, notice fist that, by summing (36) for
all i > n[u], we have

1

n
1Tn[u]

f[u] =
1

n

n∑
i=n[l]+1

β(i)Tφc(xi) + c[u](β
(i)TZ1n/n) +O(p−

1
2 ).

Since 1
n1Tn[u]

f[u] = O(p−
1
2 ), it suffices to prove 1

n

∑n
i=n[l]+1 β

(i)Tφc(xi) = O(p−
1
2 ) to con-

sequently show that 1
nβ

TZ1n = O(p−
1
2 ) from the above equation. To this end, we shall

examine the correlation between β(i)Tφc(xi) and β(j)Tφc(xj) for i 6= j > n[l]. Consider
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β(ij), Φ̂
(ij)
[u] ,M

(ij) obtained in the same way as β(i), Φ̂
(i)
[u],M

(i), but this time by leaving out

the two unlabelled samples xi, xj . Similarly to (33), we have

β(i) − β(ij) =

(
Ip +

1

p
Φ̂
(ij)
[u]

(
M (ij)

)−1
Φ̂
(ij)T
[u]

)
1

p
fjφ̂(xj) +O‖·‖(p

−1) = O‖·‖(p
− 1

2 ). (37)

It follows from the above equation that, for i 6= j > n[l],

E{β(i)Tφc(xi)β(i)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}
= E{β(ij)Tφc(xi)β(ij)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}+O(p−1)

= E{β(ij)Tφc(xi)}E{β(ij)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}+O(p−1)

= O(p−1), (38)

leading to the conclusion that 1
n[u]

∑n
i=n[l]+1 β

(i)Tφc(xi) = 1
n[u]

∑n
i=n[l]+1 E{β(i)Tφc(xi)} +

O(p−
1
2 ) = O(p−

1
2 ). Hence, 1

nβ
TZ1n = O(p−

1
2 ). Finally, we have that, for i > n[l],

fi = γβ(i)Tφc(xi) +O(p−
1
2 ), (39)

indicating that, up to the constant γ, fi asymptotically follows the same Gaussian distri-
bution as β(i)Tφc(xi).

Moreover, taking the expectation and the variance of the both sides of (39) for xi ∈ Ck
yields

E{fi|i > n[l], x ∈ Ck} = γE{β(i)T}(−1)k(1− ρk)(ν2 − ν1) +O(p−
1
2 )

var{fi|i > n[l], x ∈ Ck} = γ2tr
[
cov{β(i)}Σk

]
+ γ2E{β(i)}TΣkE{β(i)}+O(p−

1
2 ).

Since β − β(i) = O‖·‖(p
− 1

2 ) as per (33), we obtain

E{fi|i > n[l], x ∈ Ck} = γE{βT}(−1)k(1− ρk)(ν2 − ν1) +O(p−
1
2 ) (40)

var{fi|i > n[l], x ∈ Ck} = γ2tr
[
cov{β}Σk

]
+ γ2E{β}TΣkE{β}+O(p−

1
2 ). (41)

After linking the distribution parameters of unlabelled scores to those of β with Equa-
tion (40) and Equation (41), we now turn our attention to the statistical behaviour of β.
Substituting (39) into β = 1

p Φ̂f yields

β =
1

p

n[l]∑
i=1

fiφ̂(xi) +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)φ̂(xi) +O‖·‖(p
− 1

2 )

=
1

p

n[l]∑
i=1

fiφc(xi) +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)φc(xi) +O‖·‖(p
− 1

2 ). (42)
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For i > n[l] and xi ∈ Ck, we decompose φc(xi) as

φc(xi) = E{φc(xi)}+
Σkβ

(i)

β(i)Tzi
+ z̃i (43)

where

z̃i = zi −
Σkβ

(i)

β(i)Tzi
.

By substituting the expression (43) of φc(xi) into (42) and using the fact that β − β(i) =

O‖·‖(p
− 1

2 ), we obtain

(
Ip − γc[u]

2∑
a=1

ρaΣa

)
β =

1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)E{φc(xi)}

+
1

p

n[l]∑
i=1

fizi +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)z̃i +O‖·‖(p
− 1

2 ). (44)

Recall that f[l] is a deterministic vector (given in (5)) and note that

E{β(i)Tφc(xi)z̃i} = E{β(i)Tzi[zi − Σkβ
(i)/(β(i)Tzi)]} = E{β(i)Tzizi} − ΣkE{β(i)} = 0.

Taking the expectation of both sides of (44) thus gives(
Ip − γc[u]

2∑
a=1

ρaΣa

)
E{β}

=
1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γE{β(i)}TE{φc(xi)}E{φc(xi)}+O‖·‖(p
− 1

2 )

=
1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γE{β}TE{φc(xi)}E{φc(xi)}+O‖·‖(p
− 1

2 ). (45)

Let Q = Ip − γc[u]Σ̄ with Σ̄ = ρ1Σ1 + ρ2Σ2 and denote m ≡ γ(ν2 − ν1)TE{β}. With these
notations, we get directly from the above equation that

m = γρ1ρ2(2c[l] +mc[u])(ν2 − ν1)TQ−1(ν2 − ν1) + oP (1). (46)

With the notation m, (40) notably becomes

E{fi|i > n[l], x ∈ Ck} = (−1)k(1− ρk)m+O(p−
1
2 ).

In addition, we get from (45) that

γ2E{β}TΣkE{β} =
[
γρ1ρ2(2c[l] +mc[u])

]2
(ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1). (47)
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Furthermore, we have from (44) and (45)

tr[cov{β}Σk] = E
{

(β − E{β})TΣk(β − E{β})
}

=
1

p2

n[l]∑
i=1

f2i E{zTi Q−1ΣkQ
−1zi}+

1

p2

n∑
i=n[l]+1

γ2E{(β(i)Tφc(xi))2z̃Ti Q−1ΣkQ
−1z̃i}

+O(p−
1
2 ).

Since 1
pz

T
i Q
−1ΣkQ

−1zi = 1
ptr(Q−1Σ̄)2 + O(p−

1
2 ) and 1

p z̃
T
i Q
−1ΣkQ

−1z̃i = 1
ptr(Q−1Σ̄)2 +

O(p−
1
2 ), by the trace lemma (Couillet and Debbah, 2011, Lemma 14.2) and Assumption 1,

γ2tr[cov{β}Σk] =γ2
[
ρ1ρ2(4c[l] +m2c[u]) + c[u]

2∑
a=1

ρavar{fi|i > n[l], x ∈ Ca}
]1
p

tr(Q−1Σ̄)2

+O(p−
1
2 ). (48)

Using the shortcut notation σ2k ≡ var{fi|i > n[l], x ∈ Ck} for k ∈ {1, 2}, we get by substi-
tuting (47) and (48) into (41) that

σ2k =
[
ρ1ρ2(2c[l] +mc[u])

]2
(ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1)

+ γ2
[
ρ1ρ2(4c[l] +m2c[u]) + c[u]

2∑
a=1

ρaσ
2
a

]1
p

tr(Q−1Σ̄)2 + oP (1). (49)

Additionally, letting ξ ≡ c[u]γ, we get from (45)

E{β} = 2c[l]ρ1ρ2

[
Ip − ξ

(
2∑

a=1

ρaΣa + ρ1ρ2(ν2 − ν1)(ν2 − ν1)T
)]

(ν2 − ν1) +O(p−
1
2 ),

leading directly to

θ =ξρ1ρ2(ν2 − ν1)T
[
Ip − ξ

(
2∑

a=1

ρaΣa + ρ1ρ2(ν2 − ν1)(ν2 − ν1)T
)]

(ν2 − ν1) + oP (1)

(50)

where θ = c[u]m/2c[l].
Finally, the equations of Theorem 6 are retrieved by gathering (46), (49) and (50) and

by ignoring the vanishing terms. This completes the proof.

Appendix B. Proof of Proposition 5

As the eigenvector of Ls associated with the smallest eigenvalue is D
1
2 1n, we consider

L′s = nD−
1
2WD−

1
2 − nD

1
2 1n1TnD

1
2

1TnD1n
.
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Note that ‖L′s‖ = O(1) as demonstrated by Couillet and Benaych-Georges (2016), and if v
is an eigenvector of Ls associated with the eigenvalue u, then it is also an eigenvector of L′s
associated with the eigenvalue −u+ 1, except for the eigenvalue-eigenvector pair (n,D

1
2 1n)

of Ls turned into (0, D
1
2 1n) for L′s. The second smallest eigenvector vlap of Ls is the same

as the largest eigenvector of L′s.
From the random matrix equivalent of L′s given by Couillet and Benaych-Georges (2016,

Theorem 1) and that of Ŵ expressed in (20), we have

Ŵ = h(τ)L′s +
5h′(τ)2

4
ψψT +O(p−

1
2 )

where ψ = [ψ1, . . . , ψn]T with ψi = ‖xi‖2 − E[‖xi‖2].
For k ∈ {1, 2}, define jk ∈ Rn the indicator vector of class k with [jk]i = 1 if xi ∈ Ck,

otherwise [jk]i = 0. Then, we have

dinter(v) = |jT1 v/n1 − jT2 v/n2|
dintra(v) = ‖v − (jT1 v/n1)j1 − (jT2 v/n2)j2‖/

√
n

for some v ∈ Rn.
Denote by λlap the eigenvalue of h(τ)L′s associated with vlap, and λctr the eigenvalue

of Ŵ associated with vctr. Under the condition of non-trivial clustering upon vlap with
dinter(vlap)/dintra(vlap) = O(1), we have jTk vlap/

√
nk = O(1) from the above expressions of

dinter(v) and dintra(v). The fact that jTk vlap/
√
nk = O(1) implies that the eigenvalue λlap of

h(τ)L′s remains at a non vanishing distance from other eigenvalues of h(τ)L′s (Couillet and
Benaych-Georges, 2016). The same can be said about Ŵ and its eigenvalue λctr.

Let γ be a positively oriented complex closed path circling only around λlap and λctr.

Since there can be only one eigenvector of L′s (Ŵ , resp.) whose limiting scalar product with
jk for k ∈ {1, 2} is bounded away from zero (Couillet and Benaych-Georges, 2016, Theorem
4), which is vlap (resp., vctr), we have, by Cauchy’s formula (Walter, 1987, Theorem 10.15),

1

nk
(jTk vlap)2 = − 1

2πi

∮
γ

1

nk
jTk (h(τ)L′s − zIn)−1jkdz + oP (1)

1

nk
(jTk vctr)

2 = − 1

2πi

∮
γ

1

nk
jTk (Ŵ − zIn)−1jkdz + oP (1)

for k ∈ {1, 2}. Since Ŵ is a low-rank perturbation of L̂, invoking Sherman-Morrison’s
formula (Sherman and Morrison, 1950), we further have

jTk (Ŵ − zIn)−1jk = jTk (h(τ)L′s − zIn)−1jk −
(5h′(τ)2/4)

(
jTk (h(τ)L′s − zIn)−1ψ

)2
1 + (5h′(τ)2/4)ψT(h(τ)L′s − zIn)−1ψ

+ oP (nk).

As 1√
nk
jTk (h(τ)L′s − zIn)−1ψ = oP (1) (Couillet and Benaych-Georges, 2016, Equation 7.6),

we get

1

nk
jTk (Ŵ − zIn)−1jk =

1

nk
jTk (h(τ)L′s − zIn)−1jk + oP (1),
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and thus

1

nk
(jTk vlap)2 =

1

nk
(jTk vctr)

2 + oP (1),

which concludes the proof of Proposition 5.

Appendix C. Asymptotic Matrix Equivalent for Ŵ

The objective of this section is to prove the asymptotic matrix equivalent for Ŵ expressed
in (20). Some additional notations that will be useful in the proof:

• for xi ∈ Ck, k ∈ {1, 2}, ωi ≡ xi − µk, and Ω ≡ [ω1, · · · , ωn]T;

• µ◦k = µk − 1
n

∑2
k′=1 nk′µk′ , tk =

(
trCk − 1

n

∑2
k′=1 nk′trCk′

)
/
√
p;

• jk ∈ Rn is the canonical vector of Ck, i.e., [jk]i = 1 if xi ∈ Ck and [jk]i = 0 otherwise;

• ψi ≡
(
‖ωi‖2 − E[‖ωi‖2

)
/
√
p, ψ ≡ [ψ1, · · · , ψn]T and (ψ)2 ≡ [(ψ1)

2, · · · , (ψn)2]T.

As wij = h(‖xi − xj‖2/p = h(τ) + O(p−
1
2 ) for all i 6= j, we can Taylor-expand wij =

h(‖xi − xj‖2/p around h(τ) to obtain the following expansion for W , which can be found
in (Couillet and Benaych-Georges, 2016):

W = h(τ)1n1Tn +
h′(τ)
√
p

[
ψ1Tn + 1nψ

T +

2∑
b=1

tbjb1
T
n + 1n

2∑
a=1

taj
T
a

]

+
h′(τ)

p

[
2∑

a,b=1

‖µ◦a − µ◦b‖2jbjTa − 2Ω
2∑

a=1

µ◦aj
T
a + 2

2∑
b=1

diag(jb)Ωµ
◦
b1

T
n

− 2

2∑
b=1

jbµ
◦T
b ΩT + 21n

2∑
a=1

µ◦a
TΩTdiag(ja)− 2ΩΩT

]

+
h′′(τ)

2p

[
(ψ)21Tn + 1n[(ψ)2]T +

2∑
b=1

t2bjb1
T
n + 1n

2∑
a=1

t2aj
T
a

+ 2

2∑
a,b=1

tatbjbj
T
a + 2

2∑
b=1

diag(jb)tbψ1Tn + 2
2∑
b=1

tbjbψ
T + 2

2∑
a=1

1nψ
Tdiag(ja)ta

+ 2ψ
2∑

a=1

taj
T
a + 2ψψT

]
+ (h(0)− h(τ) + τh′(τ))In +O‖·‖(p

− 1
2 ).
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Applying Pn =
(
In − 1

n1n1Tn
)

on both sides of the above equation, we get

Ŵ = PnWPn

=
−2h′(τ)

p

[
2∑

a,b=1

(µ◦Ta µ◦b)jbj
T
a + PnΩ

2∑
a=1

µ◦aj
T
a +

2∑
b=1

jbµ
◦T
b ΩTPn + PnΩΩTPn

]

+
h′′(τ)

p

[
2∑

a,b=1

tatbjbj
T
a +

2∑
b=1

tbjbψ
TPn + Pnψ

2∑
a=1

taj
T
a + Pnψψ

TPn

]
+ (h(0)− h′(τ) + τh′′(τ))Pn +O(p−

1
2 )

=
1

p
Φ̂TΦ̂ + (h(0)− h(τ) + τh′(τ))Pn +O‖·‖(p

− 1
2 )

where the last equality is justified by

1

p
Φ̂TΦ̂ =

−2h′(τ)

p

[
2∑

a,b=1

(µ◦Ta µ◦b)jbj
T
a + PnΩ

2∑
a=1

µ◦aj
T
a +

2∑
b=1

jbµ
◦T
b ΩTPn + PnΩΩTPn

]

+
h′′(τ)

p

[
2∑

a,b=1

tatbjbj
T
a +

2∑
b=1

tbjbψ
TPn + Pnψ

2∑
a=1

taj
T
a + Pnψψ

TPn

]
.

Equation (20) is thus proved.
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