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ABSTRACT

Active learning aims to reduce the cost of labeling through selective
sampling. Despite reported empirical success over passive learning,
many popular active learning heuristics such as uncertainty sampling
still lack satisfying theoretical guarantees. Towards closing the gap
between practical use and theoretical understanding in active learning,
we propose to characterize the exact behavior of uncertainty sampling
for high-dimensional Gaussian mixture data, in a modern regime of
big data where the numbers of samples and features are commensu-
rately large. Through a sharp characterization of the learning results,
our analysis sheds light on the important question of when uncertainty
sampling works better than passive learning. Our results show that the
effectiveness of uncertainty sampling is not always ensured. In fact
it depends crucially on the choice of i) an adequate initial classifier
used to start the active sampling process and ii) a proper loss function
that allows an adaptive treatment of samples queried at various steps.

Index Terms— Active learning, uncertainty sampling, high-
dimensional asymptotics, random matrix theory

1. INTRODUCTION

To achieve state of the art performance, modern machine learning
techniques rely heavily on large amounts of labelled training data.
However, in many application domains one has access to lots of un-
labelled data and labeling the entire data set can be time consuming,
expensive or both. Therefore, it is desirable to query as few labels as
possible and yet achieve good accuracy. Active learning [1] aims to
achieve this goal with a better selection of data to label as compared
to random sampling. Despite empirical success, our theoretical un-
derstanding of popular active learning heuristics such as uncertainty
sampling [2] is rather limited.

In this article we are interested in the behavior of uncertainty
sampling. In uncertainty sampling, a base classifier is repeatedly
trained on a growing set of labelled data, where data added at one
iteration are obtained by labeling the observations with the lowest
confidence level under the most recently trained base classifier. This
technique of confidence-based sampling is arguably the simplest and
most used active learning paradigm, with many successful empirical
applications [3, 4, 5, 6, 7, 8].

Despite its popularity and its competitive performance against
more sophisticated active learning methods [9, 10, 11, 12], confidence-
based sampling has been analyzed in few works [13], so there is
a lack of strong theoretical support for its superiority over passive
learning. Meanwhile a major line of theoretical studies for active
learning focuses on intractable algorithms requiring an explicit
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enumeration over the hypothesis space [14, 15, 16, 17]. The lack of
satisfying theoretical guarantees for uncertainty sampling may be
explained by the instability of confidence-sampling procedures. In
fact, it has been observed that uncertainty sampling sometimes yields
worse results than random sampling, depending on the learning task
and the choice of hyperparameters. To capture the advantage of
uncertainty sampling and how this dependence changes in different
settings, a precise understanding is needed on the joint effect of data
and hyperparameters.

To this aim we develop a precise characterization of confidence-
based active learning in a streaming setting. Our approach draws
upon recent advances in high dimensional statistics and random ma-
trix theory to precisely predict the performance of confidence-based
sampling, in a high-dimensional asymptotic regime where size of the
training data and their dimension are comparably large. The high-
dimensional asymptotic viewpoint provides exhaustive details into
the learning performance as it varies with the sample size and the
choice of hyperparameters. Compared to a series of recent works
in this vein [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
the main challenge of our analysis comes from the iterative nature
of active learning, which to the best of our knowledge has not been
studied before. Like the previous works, our analysis is restricted to
linear models, placed under a standard setting of classifying Gaussian
mixtures. As active learning involves a computationally expensive
process of repeatedly training the learning model with newly added
data, linear models are of particular interest in this context for their
computational efficiency. Also, active learning is usually employed
when labeled data are difficult to obtain, whereas the success of more
complex non-linear models, e.g., neural networks, often relies on a
huge amount of labeled data.

Our precise performance result, presented in Section 3, provides
insights into when effective active learning can be achieved, discussed
in Section 4 where we shed light on how selecting a sufficiently large
initial training size, and choosing appropriate loss functions adapted
to data sampled at various steps, are both critical to the success of
active learning.

2. PROBLEM SETUP

Our analysis focuses on a standard Gaussian mixture model exten-
sively studied in the setting of passive learning (see references in the
introduction), with feature vectors x ∈ Rp and ground truth class
labels y = ±1 generated from the following distribution

y ∼ Unif{−1, 1}, x ∼ N (yµ,Σ). (1)

Here, µ ∈ Rp are deterministic vectors of bounded norm and Σ ∈
Rp×p are symmetric positive definite matrices with finite non-zero
eigenvalues.



The Bayesian classification rule that yields the smallest error for
the above Gaussian mixture model is

xTw∗ ≶ 0⇒ y = ±1, where w∗ = Σ−1µ;

as it is easy to check that the probability of correct classification given
by any w ∈ Rp satisfies the following inequality

P(ywTx > 0|w) ≥ Err(w∗) = Q(
√
u),

where Q(t) = 1√
2π

∫∞
t
e−x

2/2dx is the Q-function and

u = µTΣ−1µ, (2)

is a quantity that reflects (inversely) the underlying difficulty of the
classification problem. The goal of statistical learning is thus to
estimate the oracle weight vector w∗ from a set of labelled data.

We propose to analyze a generalized active learning procedure
of confidence-based sampling, with base classifiers defined under an
empirical risk minimization (ERM) framework minw

∑
i `(yiw

Txi)
which retrieves popular classification methods including SVMs, lo-
gistic regression and least-square classification with different loss
functions `. Since in active learning the labelled samples can no
longer be seen as i.i.d. realisations due to the iterative query proce-
dure, data queried at various iterations should be treated differently
when defining the loss function. Thus, our analysis allows the use
of an adaptive loss `, defined via a set of loss functions `tq applied
at the t-th iteration and to samples queried at the q-th iteration for
some q ≤ t. Our results apply to continuous and proper convex loss
functions such as the logistic loss `(s) = ln(1 + e−s), the square
loss `(s) = (1− s)2, the exponential loss `(s) = e−s, the hinge loss
`(t) = max{0, 1−t} and the absolute value loss `(s) = |1−s|. The
analyzed framework of active learning is summarized in Algorithm 1,
where, after a initial training on randomly sampled data, the query
strategy is based on the prediction classification score given by the
classifier from the previous iteration, with scores of greater absolute
value naturally indicating higher level of confidence in the binary
classification. As uncertainty sampling typically queries the least con-
fident samples, it corresponds to taking A = (−ε, ε) in Algorithm 1
for some small tolerance ε.

It is intuitively clear that a non-negligible increase in performance
after a query step requires the number nt of newly added samples
not to be vanishingly small compared to the dimension p of feature
vectors, in other words, the (normalized) query step sizes

αt = nt/p (3)

should be bounded away from zero in the limit of large p. More
formally, this leads to the following assumption.

Assumption 1 (High-dimensional asymptotics). The initial sample
ratio α0 = n0/p and the query step sizes αt = nt/p for t ∈
{0, . . . , T} are bounded away from zero for arbitrarily large p.

Recall that n =
∑T
t=0 nt, we define the corresponding α as

α = n/p =
T∑
t=0

αt. (4)

The empirical risk minimization involved in the training of classifier
is supposed here to always be a well-posed problem with a unique
solution of bounded norm. This well-posedness condition implies
that α0 is greater than 1, otherwise it is easy to show that there are
infinitely many solutions for the initial classifier w0.

Algorithm 1 Confidence-Based Active Learning
Input parameters: label budget n, number T of iterations, query
strategy A, adaptive loss ` = {`tq|q, t ∈ N, q ≤ t, t ≤ T}, number
n0 of initial training samples and sizes nt of query steps such that∑T
t=0 nt = n.

1: Obtain a initial set T of n0 randomly selected labelled samples
{(xi, yi)}n0

i=1, and let w0 be given by

w0 = argminw∈Rp

n0∑
i=1

`00
(
yiw

Txi
)
.

2: For t ∈ [1, . . . , T ],

1. query the label y of a new coming observation x
if xTwt−1 ∈ A and index the labelled sample by
(xi, yi) ← (x, y) with i = |T | + 1 before adding it
to the training set T , until |T | ≡ Nq =

∑t
q=0 nq .

2. obtain wt by

wt = argminw∈Rp

t∑
q=0

Nq∑
i=Nq−nq+1

`tq
(
yiw

Txi
)

3: Output the final active learning classifier wT , obtained with a
total budget of n label requests.

3. MAIN RESULTS

In this section we present our main results for predicting the active
learning performance on high-dimensional Gaussian mixture data.

3.1. System of Equations

It is easy to see, by the central limit theorem, that in the limit of high
dimensions, the prediction score xTwt for a new observation x by
the classifier wt of the t-th iteration is asymptotically a Gaussian vari-
able of mean ywT

t µ with y the underlying class label, and variance
wT
t Σwt. Both wT

t µ and wT
t Σwtcan be shown to converge to some

deterministic limits mt, stt.The covariance between the prediction
scores xTwt,x

Twt′ at any two iterations has a limiting value stt.
We denote by m = {mt}Tt=0 the limiting mean vector of prediction
scores and by S = {stt′}Tt,t′=0 the limiting covariance matrix.

A key fact in our characterization is that m,S can be expressed as
some deterministic functions of the asymptotic losses `tq(yixT

i wt)
on the training data. We then define the asymptotic loss matrix
C ∈ R(T+1)(T+1), which is a lower triangular random matrix such
that [C](t+1)(q+1) for t ≥ q has asymptotically the same distribution
as `tq(yixT

i wt) for (yi,xi) queried at the q-th iteration. It is far from
trivial to characterize the asymptotic loss matrix C, as the statistical
behavior of the fitted scores yixT

i wt on the training samples (xi, yi)
is hard to describe due to the implicit dependence between xi and
wt. Importantly, our analysis relies on the fact that the limiting
behavior of the fitted scores can be accessed through a proximal
mapping of the conditional prediction scores y[q]xT

[q]wt for some
new instance (x[q], y[q]) generated from (1) and conditioned on the
query rule at the q-th iteration. Therefore our equations involve the
asymptotic conditional prediction score matrix R ∈ R(T+1)(T+1)

with R(t+1)(q+1) following asymptotically the same distribution as
y[q]x

T
[q]wt. Also note that, unlike C, R is statistically tractable as

it contains Gaussian variables conditioned by the query rule, and its



distribution can be fully described given m and S: indeed, we shall
define R = [r0, . . . , rT ] where r0 ∼ N (m,S) and

rt+1 = m + s
− 1

2
tt gt[S]t· + ζt+1, t ≥ 0

for gt of density f(a) = fN (0,1)(a)1A(mt +
√
stta) and ζt+1 ∼

N
(
0T+1,S− s−1

tt [S]·t[S]t·
)

independent of gt. The proximal op-
erator hΦ(·) that allows one to access C from R is

hΦ(M) = argminM′

[ ∑
q≤T ′

∑
t≥q

`tq([M](t+1)(q+1))

+
1

2
tr (M′ −M)TΦ(M′ −M)

]
, (5)

for any M ∈ R(T+1)(T ′+1) with T ′ ≤ T . With the help of the
proximal operator hΦ(·), the matrix C can be expressed as

C = Φ(hΦ(J⊗R)− J⊗R). (6)

with J ∈ R(T+1)(T+1) and [J]dd′ = 1d≥d′ . It remains to define the
deterministic matrix Φ involved in the definition (5) of the proximal
operator hΦ(·) and the equations (8) and (6), which is itself the
expectation of a function of R and C:

Φ = −E[CD(α)(R−m1T
T+1)

T]S−1 (7)

We are now ready to present the system of equations determining
m and S as follows

S = Φ−1
(
uE[Cα]TE[Cα] + E[CD(α)CT]

)
(Φ−1)T

m = Φ−1uE[Cα] (8)

where α = {αt}Tt=0.

3.2. Precise Performance

The primary outcome of our analysis is a prediction of the active
learning performance that is exact for sufficiently high-dimensional
data. As presented in Theorem 1, the asymptotic classification error
can be computed by solving the system of equations (8) presented in
Section 3.1. Indeed, by solving (8), we have access to the limiting
value (mt, stt) of (wT

t µ,w
T
t Σwt). Since the prediction score wT

t x
for a new observation x is asymptotically a Gaussian variable of mean
ymt (with y the underlying class label of x) and variance stt, we
obtain the high-dimensional classification error of wt as a Q-function
of mt/

√
stt. The proof of Theorem 1 is deferred to a longer version

of this work. A numerical validation is provided in Figure 1, where
a extremely close match between our theoretical prediction and the
actual empirical performance is observed on data of only moderately
large dimension p = 100.

Theorem 1 (Precise performance of Confidence-Based Active Learn-
ing). Let Assumption 1 hold. Then, for wt with t ∈ {0, . . . , T}
given in Algorithm 1, we have

P(ywT
t x > 0|wt) = Q

(
mt√
stt

)
+ oP (1) (9)

with positive constants mt, stt given in (8).

Our precise performance result allows one to assess whether
active learning outperforms passive learning, leading to a series of
insightful consequences discussed in Section 4
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Fig. 1. Comparison of theoretical prediction (given in Theorem 1)
and empirical performance (averaged over 100 realizations), along
with the optimal performance of passive learning (retrieved from
Theorem 2). Results reported on Gaussian mixture data with p =
100, µ = 1p/4 and {Σ}i,j = .4|i−j|, with `qt = (1 − t)2, A =
(−0.1, 0.1), fixed query size nt = 10 and various initial numbers
n0 = {160, 210, 260} (from left to right).

4. CONSEQUENCES

Since the goal of active learning is to surpass passive learning under
the same label budget, we retrieve from [32] the best achievable
passive learning performance as a point of reference for comparison.

Theorem 2 (Optimal Passive Learning Performance [32] ). Let As-
sumption 1 hold and wps = argminw∈Rp

∑n
i=1 `(yiw

Txi) with n
randomly sampled labelled data (xi, yi). Then,

P(ywT
psx > 0|wps) ≥ Q(

√
θps) (10)

holds with high probability for

θps =
(α− 1)u2

αu+ 1
(11)

where α = n/p per (4).

Remark also from [32] that the performance upper bound of
passive learning in Theorem 2 can be reached with the square loss
`(t) = (1 − t)2. We propose then to use an adaptive square loss
` with quadratic functions `tq for q ≤ t, t ≤ T . To facilitate
the discussion, we focus on one-step active learning, let `00(t) =
`01(t) = (1− t)2, `11(t) = (λ− t)2 with an adjustable λ ∈ R that
allows an adaptive treatment of actively queried samples, and denote

θ(α0, λ) = lim
ε→0

m1√
s11

(12)

where m1, s11 are given by (8) with an adaptive square loss as speci-
fied above, and with a query strategy of A = (−ε,+ε). The success
of active learning is indicated by θ(α0, λ) > θps.

Focusing on this one-step active learning scenario, we will de-
rive from Theorem 1 and Theorem 2 some insightful consequences
on the size of initial random sampling, the optimal active learning
performance and the corresponding choice of hyperparameters.

4.1. Condition on Initial Sampling

We provide first in Corollary 1 a sufficient condition on the size of
initial training set so that the one-step uncertainty sampling with
properly set loss function achieves a guaranteed performance gain.
This result suggests that the effectiveness of uncertainty sampling can
be ensured under sufficiently good initial classifiers.



Corollary 1 (Sufficient Condition on Initial Sample Size). Under
Assumption 1, for any

α0 > 1 +
1

u
, (13)

we have that
max
λ∈R

θ(α0, λ) > θps

where θ(α0, λ) is defined by (12) and θps by (11).

It is often observed in practice that large-batch queries lead to
performance loss. However, as revealed in Corollary 1, provided an
adequate adaptive loss, the performance of active learning remains
superior to that of passive learning regardless of the active query size
α1, under the condition (13) on the initial size α0. The bound (13)
on α0 is tight with respect to the order of u, in the sense that if α0

is smaller than 1 + 1
u

, then there exists an α greater than α0 such
that active learning with optimal λ is surpassed by passive learning,
with high probability for large n, p. Another remark to be made
from (13) is that the sufficient size of initial sampling is smaller for
larger u, corresponding to more separable Gaussian mixtures. This
negative association between the effectiveness of active learning and
the limiting error of the learning task is consistent with the observation
of [13], where the authors demonstrated the link through extensive
experimentation and asymptotic data efficiency.

4.2. Choice of Hyperparameters

Laid out in Corollary 2 is the optimal choice of hyperparameters α0

and λ that maximizes the active learning performance.

Corollary 2 (Optimization of Active Learning Performance). Let
Assumption 1 hold, we have

max
α0∈(1,α),λ∈R

θ(α0, λ) =

(
1 +

aγ2

(γ + 1)2

)
θps (14)

where θ(α0, λ) is defined by (12), θps by (11) and1

γ =
(√
au− u− 1

)
+
.

Furthermore, θ(α0, λ) is maximized uniquely at

α∗0 = α− (γ + 1)2 − 1

u
+

(u+ 1)γ2 + uγ

uγ + u2 + u
(15)

λ∗ = 1 + η
(u+ 1)(γ + 1)(1− uγ)

u2 + u(γ + 1)
(16)

with η =
(a−a∗0)au

(a−a∗0)(aa
∗
0−1)(u+1)u+a(a∗0−1)(a∗0u+1)

> 0.

We remark first from (14) that given optimally set hyperparame-
ters α0 and λ, the minimum label budget α required for a better per-
formance over passive learning coincides with the threshold 1 + 1/u
of the initial sampling size α0 to ensure an effective active learning
for all values of the query step size α1 with a properly set λ, as stated
in Corollary 1. When this minimum requirement of label budget is
met, the optimal value α∗0 of the initial sampling size α0 is always
greater the threshold 1 + 1/u, which can be deduced from (15) by
observing that when α > 1+1/u, the first two terms at the right-hand
side sum up to 1 + 1/u and the third term is strictly positive.

Note from (16) that the optimal value λ∗ of the loss function
parameter λ can be greater or smaller than 1. Since a value of λ

1The operator (·)+ preserves the input value if it is positive, and outputs
zero if not.
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Fig. 2. The optimal choice of hyperparameters as the label budget a
varies, for classification of several difficulty levels quantified by u.
Top: the optimal value α∗0 (given in (15)) of the initial sampling size
α0. Bottom: the optimal value λ∗ (given in (16)) of the loss function
hyperparameter λ.

higher than 1 can be understood as imposing class labels of larger
absolute value on actively sampled data, we observe that it can be
helpful to emphasize more or less the queried samples, depending
on the quantities a, u, which define the learning scenario. For easier
tasks with higher u and larger label budgets α, we should assign class
labels of smaller absolute value to queried samples.

We visualise the behavior of optimised hyperparameters α∗0, λ∗

in Figure 2 with respect to u, a. It can be observed in the top plot
of Figure 2 that after the threshold α = 1 + 1/u, before which a
totally random sampling gives the best performance as α∗0 = α, the
value of α∗0 continues to grow almost linearly with α. We remark
also from the bottom plot of Figure 2 that after going higher than 1
right past the threshold α = 1 + 1/u, λ∗ can descend rather quickly
below 1 for a value of u as large as 2, which corresponds to an oracle
classification error around 7.86%.

5. CONCLUSION

Motivated by insufficient theoretical understanding of active learning,
we provided, in the limit of numerous high-dimensional data, an exact
characterization of the widely used but rarely analysed method of un-
certainty sampling. Our simulation showed that this high-dimensional
asymptotic characterization allows one to predict the actual active
learning performance on finite and moderately large data sets (of n, p
around hundreds) with great precision.

A major drawback of uncertainty sampling is its instability, yield-
ing sometimes worse performance than passive learning. As one of
the first steps towards better understanding and handling the instabil-
ity issue of uncertainty sampling, our study is placed under a standard
data model of Gaussian mixtures which is realistic enough to demon-
strate the unstable behavior of uncertainty sampling, thereby shedding
light on the critical choice of hyperparameters. A more direct way to
employ our results in practice is to first use prior domain knowledge
to get an approximation of the oracle classification error, from which
the value of u can be deduced, then plug the estimated u into our
performance function to guide the choice of hyperparameters.



6. REFERENCES

[1] Burr Settles, “Active learning literature survey,” Tech. Rep.,
University of Wisconsin-Madison Department of Computer
Sciences, 2009.

[2] David D Lewis and William A Gale, “A sequential algorithm
for training text classifiers,” in SIGIR’94. Springer, 1994, pp.
3–12.

[3] Hande Alemdar, TLM Van Kasteren, and Cem Ersoy, “Active
learning with uncertainty sampling for large scale activity recog-
nition in smart homes,” Journal of Ambient Intelligence and
Smart Environments, vol. 9, no. 2, pp. 209–223, 2017.

[4] Richard Segal, Ted Markowitz, and William Arnold, “Fast
uncertainty sampling for labeling large e-mail corpora.,” in
CEAS. Citeseer, 2006.

[5] Greg Schohn and David Cohn, “Less is more: Active learning
with support vector machines,” in ICML. Citeseer, 2000, vol. 2,
p. 6.

[6] Vikas Sindhwani, Prem Melville, and Richard D Lawrence,
“Uncertainty sampling and transductive experimental design for
active dual supervision,” in Proceedings of the 26th Annual
International Conference on Machine Learning, 2009, pp. 953–
960.

[7] Alexander Liu, Goo Jun, and Joydeep Ghosh, “A self-training
approach to cost sensitive uncertainty sampling,” Machine
learning, vol. 76, no. 2-3, pp. 257–270, 2009.

[8] Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor, “Active
learning for networked data,” in Proceedings of the 27th inter-
national conference on machine learning (ICML-10), 2010, pp.
79–86.

[9] Yazhou Yang and Marco Loog, “A benchmark and comparison
of active learning for logistic regression,” Pattern Recognition,
vol. 83, pp. 401–415, 2018.

[10] Maria E Ramirez-Loaiza, Manali Sharma, Geet Kumar, and
Mustafa Bilgic, “Active learning: an empirical study of common
baselines,” Data mining and knowledge discovery, vol. 31, no.
2, pp. 287–313, 2017.

[11] Burr Settles and Mark Craven, “An analysis of active learning
strategies for sequence labeling tasks,” in Proceedings of the
2008 Conference on Empirical Methods in Natural Language
Processing, 2008, pp. 1070–1079.

[12] Andrew I Schein and Lyle H Ungar, “Active learning for logistic
regression: an evaluation,” Machine Learning, vol. 68, no. 3,
pp. 235–265, 2007.

[13] Stephen Mussmann and Percy Liang, “On the relationship
between data efficiency and error for uncertainty sampling,” in
International Conference on Machine Learning. PMLR, 2018,
pp. 3674–3682.

[14] Sanjoy Dasgupta, “Coarse sample complexity bounds for active
learning,” Advances in neural information processing systems,
vol. 18, pp. 235–242, 2005.

[15] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni, “A
general agnostic active learning algorithm,” Advances in neural
information processing systems, vol. 20, pp. 353–360, 2007.

[16] Maria-Florina Balcan, Alina Beygelzimer, and John Langford,
“Agnostic active learning,” Journal of Computer and System
Sciences, vol. 75, no. 1, pp. 78–89, 2009.

[17] Chicheng Zhang and Kamalika Chaudhuri, “Beyond
disagreement-based agnostic active learning,” in Advances
in Neural Information Processing Systems, 2014, pp. 442–450.

[18] Noureddine El Karoui, Derek Bean, Peter J Bickel, Chinghway
Lim, and Bin Yu, “On robust regression with high-dimensional
predictors,” Proceedings of the National Academy of Sciences,
p. 201307842, 2013.

[19] Romain Couillet, Florent Benaych-Georges, et al., “Kernel spec-
tral clustering of large dimensional data,” Electronic Journal of
Statistics, vol. 10, no. 1, pp. 1393–1454, 2016.

[20] Hanwen Huang, “Asymptotic behavior of support vector ma-
chine for spiked population model,” Journal of Machine Learn-
ing Research, vol. 18, no. 45, pp. 1–21, 2017.

[21] Edgar Dobriban, Stefan Wager, et al., “High-dimensional
asymptotics of prediction: Ridge regression and classification,”
The Annals of Statistics, vol. 46, no. 1, pp. 247–279, 2018.

[22] Pragya Sur and Emmanuel J Candès, “A modern maximum-
likelihood theory for high-dimensional logistic regression,”
arXiv preprint arXiv:1803.06964, 2018.

[23] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi,
“Precise error analysis of regularized m-estimators in high di-
mensions,” IEEE Transactions on Information Theory, vol. 64,
no. 8, pp. 5592–5628, 2018.

[24] Xiaoyi Mai and Romain Couillet, “A random matrix analysis
and improvement of semi-supervised learning for large dimen-
sional data,” The Journal of Machine Learning Research, vol.
19, no. 1, pp. 3074–3100, 2018.

[25] Zhenyu Liao and Romain Couillet, “A large dimensional anal-
ysis of least squares support vector machines,” IEEE Trans-
actions on Signal Processing, vol. 67, no. 4, pp. 1065–1074,
2019.

[26] Fariborz Salehi, Ehsan Abbasi, and Babak Hassibi, “The impact
of regularization on high-dimensional logistic regression,” in
Advances in Neural Information Processing Systems, 2019, pp.
12005–12015.

[27] Khalil Elkhalil, Abla Kammoun, Romain Couillet, Tareq Y Al-
Naffouri, and Mohamed-Slim Alouini, “A large dimensional
study of regularized discriminant analysis,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2464–2479, 2020.

[28] Hossein Taheri, Ramtin Pedarsani, and Christos Thrampoulidis,
“Fundamental limits of ridge-regularized empirical risk mini-
mization in high dimensions,” arXiv preprint arXiv:2006.08917,
2020.

[29] Christos Thrampoulidis, Samet Oymak, and Mahdi
Soltanolkotabi, “Theoretical insights into multiclass
classification: A high-dimensional asymptotic view,” arXiv
preprint arXiv:2011.07729, 2020.

[30] Adel Javanmard and Mahdi Soltanolkotabi, “Precise statistical
analysis of classification accuracies for adversarial training,”
arXiv preprint arXiv:2010.11213, 2020.

[31] Malik Tiomoko, Romain Couillet, and Hafiz Tiomoko, “Large
dimensional analysis and improvement of multi task learning,”
arXiv preprint arXiv:2009.01591, 2020.

[32] Xiaoyi Mai and Zhenyu Liao, “High Dimensional Classifica-
tion via Regularized and Unregularized Empirical Risk Mini-
mization: Precise Error and Optimal Loss,” arXiv e-prints, p.
arXiv:1905.13742, May 2019.


	 Introduction
	 Problem Setup
	 Main Results
	 System of Equations
	 Precise Performance

	 Consequences
	 Condition on Initial Sampling
	 Choice of Hyperparameters

	 Conclusion
	 References

